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ABSTRACT: We hypothesize that the degree of surface
exposure of amino acid side chains within a globular, soluble
protein has been optimized in evolution, not only to minimize
the solvation free energy of the monomeric protein but also to
prevent protein aggregation. This effect needs to be taken into
account when engineering proteins de novo. We test this
hypothesis through addition of a knowledge-based, exposure-
dependent energy term to the ROSETTADESIGN solvation
potential [Lazaridis, T., and Karplus, M. (1999) Proteins 35,
133−152]. Correlation between amino acid type and surface
exposure is determined from a representative set of
experimental protein structures. The amino acid solvent
accessible surface area (SASA) is estimated with a neighbor vector measure that increases in accuracy compared to the
neighbor count measure while remaining pairwise decomposable [Durham, E., et al. (2009) J. Mol. Model. 15, 1093−1108].
Benchmarking of this potential in protein design displays a 3.2% improvement in the overall sequence recovery and an 8.5%
improvement in recovery of amino acid types tolerated in evolution.

Computational design of proteins is an active area of
research. The design of protein surfaces with proper

amino acid composition is critical to preventing aggregation
and allowing for correct protein folding.3 Thermostabilization
of enzymes and design of proteins with novel folds are two
possible applications of this research.
As there are relatively few explicit interactions of amino acids

on the protein surface, the total energy of a residue is
dominated by ROSETTA’s implicit solvation model. The
solvation model currently used by ROSETTA is a function
developed by Lazaridis and Karplus.1 This potential estimates
the solvation free energy of an atom from a reference free
energy, where the atom is essentially fully solvent-exposed. For
every proximal atom, a cost of “desolvation” is added in a
pairwise decomposable and distance-dependent manner. This
procedure aligns with the protein folding process, in which
amino acids move from a completely exposed location
(reference state) into varying degrees of burial. While the
model is parametrized for all amino acid atom types, it is driven
by high desolvation penalties of polar atoms. It is quite
insensitive to the burial of apolar atoms because desolvation
energies are small.
This paradigm of desolvation is useful for determining energy

changes in the folding of a monomeric protein. However,
hydrophobic patches on the surface of a de novo-designed
protein are hardly penalized, as the environment of these amino
acids did not change in the folding process. At present,
ROSETTADESIGN excels in the design of tightly packed protein
cores, while the protein surface is often poorly composed and

requires manual adjustment.4 We hypothesize that native
proteins have evolved to minimize unspecific aggregation, a
fact that is ignored by the desolvation potential. Evolutionary
pressures exerted on protein sequence composition by the
requirement of protein solubility are difficult to model with a
typical physics-based model but can be modeled effectively with
a knowledge-based energy potential.
The ROSETTADESIGN energy function is a weighted composite

of the Lazaridis−Karplus solvation free energy potential,
attractive and repulsive interactions, an action center pairwise
potential to approximate electrostatic interactions, an orienta-
tion-dependent hydrogen bonding potential,5 and reference
energies for amino acid type and conformation.4 Amino acid
reference energies and scoring function weights are optimized
to maximize sequence recovery in a protein design benchmark.
Reference energies can be viewed as the ground state energy of
an amino acid in an essentially fully exposed, unfolded peptide
chain. Hence, these reference energies can disfavor apolar
amino acids on the surface, thereby representing some of the
evolutionary pressure to prevent aggregation. However, the
same reference energies are also fitted to reflect amino acid
propensities in nature in a manner independent of burial. In
addition, the reference energies are fitted to maximize sequence
recovery and thereby counterweight other inaccuracies in the
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ROSETTADESIGN energy function. As a result, the reference
energies form a container term that combines multiple effects
that can be difficult to disentangle, and it provides a corrective
power against exposed hydrophobic amino acids on the surface.
To improve upon the shortcomings of ROSETTADESIGN

described above, we implemented the neighbor vector (NV)-
based knowledge-based potential (KBP) previously described
by Durham et al.2 This neighbor vector environment KBP
converts the likelihood to see an amino acid at a given level of
exposure into an environment energy. The NV environment
KBP encapsulates both desolvation energy and evolutionary
biases against apolar amino acids at the protein surface with
amino acid-level resolution.
The usefulness of an environment potential based on burial is

contingent on an accurate measure of burial. Solvent accessible
surface area (SASA) is the most accurate means of calculating
amino acid burial but is generally time-consuming to compute,
limiting its usefulness in protein design. ROSETTADESIGN

currently uses a neighbor count method (NCR) for estimating
solvent accessibility in the pair potential. While the NCR
method correlates with residue burial, high inaccuracies are
common in surface and partially exposed positions (Figure 1).

To overcome the limitations of the NCR burial approx-
imation, an NV approximation of residue burial was
implemented. For a schematic representation of the NV
algorithm, see Figure 2 of the Supporting Information. The NV
algorithm and KBP generated and described by Durham et al.2

was used in our implementation. Proteins selected for deriving
the KBP were monomeric, globular proteins, which do not
engage in obligate, and therefore strong, protein−protein
interactions. It is expected that some of these proteins will
engage in transient interactions with other proteins; however,
these interactions will be weaker. As a result, the noise added to

the KBP by these interactions will be of low magnitude and
uniform.
The half-sphere approximation method developed by

Hamelryck in 20056 approximates surface accessibility by
counting the number of residues in a half-sphere below the side
chain of each amino acid. The half-sphere count is directly
related to residue burial. Half-sphere exposure (HSE) is
implemented in the freely available BioPython library, and
this library was used to compare performance of HSE and NV
to relative SASA (calculated using NACCESS). The per residue
exposure was calculated for each of the proteins in the 42-
protein benchmark set, and adjusted R2 values were calculated
for the correlation of each measure to relative SASA (rSASA).
The adjusted correlation factor R2 value for HSE versus rSASA
was 0.68, while the adjusted correlation factor R2 for the NV
method was 0.86. This suggests that while HSE is conceptually
simpler, it does not perform as accurately as NV for proteins in
our benchmark set.
A linear regression modeling the correlation between rSASA

values (in the range of 0−1 calculated using NACCESS) and
NV score (range of 0−1) was generated on the basis of all
proteins in the 42-protein benchmark set. The resulting linear
regression model was rSASA = 1.29(NV) − 0.11 and had an R2

of 0.86. On the basis of this model, residues with NV scores
between 0.00 and 0.24 will have an approximate rSASA value of
0−0.19, residues with NV scores from 0.25 to 0.39 will have an
approximate rSASA value of 0.21−0.39, and residues with NV
scores between 0.40 and 1.00 will have an approximate rSASA
value of 0.40−1.10.
Terms in the ROSETTADESIGN energy function can take the

form of either single-body or two-body terms. Two-body terms
describe energies that pertain to the interaction between
residues, such as the energy associated with hydrogen bonding,
while single-body terms describe energies that pertain only to a
single residue. The resulting NV environment KBP was
implemented as a single-body term in the ROSETTADESIGN

energy function. ROSETTADESIGN revision 39040 was used in all
calculations.
Computationally assessing the performance of a protein

design algorithm is inherently challenging. Historically, percent
sequence recovery has been used as a metric for the quality of a
protein design, as it has been observed that protein sequences
are frequently close to optimal for a given fold.7 However,
many protein folds having large variations in sequence are
frequently seen in nature.8 Of the 74608 protein chains present
in the Structural Classification of Proteins (SCOP) database as
of 2009, only 1280 individual folds are observed.9 In many
positions, particularly on the surface of proteins, multiple
residues can be tolerated with similar energies. This finding
limits sequence recovery as a measure for successful protein
design because the design of a different but tolerated amino
acid is counted as a failure. To resolve this problem, we
introduce a metric based on sequence homology. A Position
Specific Scoring Matrix (PSSM) is derived from a Basic Local
Alignment Search Tool (BLAST) query of the native sequence
of a protein. The percent recovery of amino acids with positive
values in the PSSM determines the recovery of evolutionarily
tolerated amino acids.

■ EXPERIMENTAL PROCEDURES
The ROSETTADESIGN energy function is a linear combination of
individual energy terms. As a result, the addition of a new
energy term will impact the energy function as a whole. To

Figure 1. Comparison of NV and NCR measures to rSASA. In both
panels, a color map plots the difference between a surface
approximation method and the normalized rSASA value. A residue
for which the SASA approximation matches rSASA exactly would have
a score of 0 and be colored white. Regions of the surface colored red
are categorized as more solvent exposed than by rSASA, while regions
colored blue are categorized as less solvent exposed than by rSASA.
(A) Protein 7DFR colored by the neighbor count approximation of
surface accessibility as used in ROSETTA (NCR). (B) Protein 7DFR
colored using the neighbor vector (NV) approximation. The NV
measure has significantly smaller deviations from the rSASA standard
with a mean of 0.14 compared to the mean deviation of 0.20 seen with
the NCR measure. Additionally, the NV measure is more consistent,
with a standard deviation of 0.11 compared to the standard deviation
of 0.46 seen with the NCR metric. Panels A and B illustrate the
improvement in consistency, as areas of score deviation in panel B are
smaller and generally less “patchy” in their appearance.
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address this, each energy term is multiplied by a weight, and
these weights must be carefully optimized following the
introduction of a new term. In most cases, it is not necessary
to optimize the entire scoring function when a new term is
added. Instead, only the terms that describe similar information
as the new term are optimized. In the case of the NV
environment KBP, the solvation free energy potential and the
reference energies must also be optimized.
To ensure that the optimized weights would apply to a wide

range of proteins, a set of 100 soluble protein crystal structures
from the Protein Data Bank (PDB) were used in optimization.
Structures were selected to have a sequence homology of less
than 25%, a length of 67−179 amino acids, and a resolution
better than 2.0 Å. The optimization was conducted using a five-
way cross-validation protocol. In this protocol, the 100 crystal
structures described above were split into five groups of 20
structures each. In each component of the five-way validation,
80 proteins were used during optimization, and the remaining
20 were used to benchmark the resulting weights. In statistics
generated from the benchmarking phase of the optimization
process, results from all five sets of 20 proteins are combined,
resulting in a total benchmark set of 100 proteins.
An iterative particle swarm approach10 was used to optimize

the weights. The ROSETTADESIGN standard energy function was
used as an initial point for optimization, and the weight of the
NV environment KBP was arbitrarily given an initial value of
1.0. Twenty rounds of particle swarm optimization were
performed for each component of the five-way cross validation
described above. The weights were optimized to maximize the
PSSM score of proteins designed using the energy function
(Table 1 of the Supporting Information). The PSSM for each
protein was generated from a PSI-PRED BLAST query of the
protein structure sequence using an e threshold of 0.001 and
three iterations. The nonredundant (NR) sequence database
was used. The average level of sequence identity between the
query sequence and all other sequences in the generated
PSSMs was 30% for both benchmark sets
Because the standard deviation of the averaged reference

energies was relatively high, the reference energies of the
averaged energy function are optimized to reduce the overall

sequence composition biases introduced during design (Table 2
of the Supporting Information).
Two separate optimization experiments were performed. In

the first experiment, the reference energies, solvation free
energy potential, and the NV environment KBP were
optimized. In the second experiment, the NV environment
KBP was excluded from the energy function, and only the
reference energies were optimized. This second experiment acts
as a control and makes it possible to distinguish between design
improvements caused by reference energy optimization and
design improvements caused by the addition of the NV
environment KBP itself. While both the NV environment KBP
and the solvation free energy potential describe overlapping but
different phenomena at different levels of resolution, the NV
environment KBP is an indirect measure of solvation free
energy and evolutionary biases against aggregation. It is a
measure at amino acid resolution and will be independent of
side chain conformation. In contrast, the solvation free energy
potential is at atomic resolution incorporating a specific model
of solvation. While the solvation free energy potential does an
inadequate job of accounting for biases against aggregation on
the protein surface, it is highly accurate in avoiding burial of
polar atoms and is important in identifying side chain
conformations.
The optimization experiments described above produce five

individual energy functions, each generated from one section of
the five-way cross validation. To produce a single optimized
scoring function for general use, the weights from the five
optimized energy functions are averaged together, and the
reference energies of the averaged energy function are
optimized using the set of 100 proteins used in the initial
cross validation. The averaged energy function is benchmarked
on an independent set of 42 protein crystal structures, in which
the proteins have a sequence homology of less than 15%, a size
range of 150−225, and a resolution of less than 1.5 Å. Note that
these proteins are larger and more complex than the proteins
used in the more time-consuming weight optimization
procedure. As a result, this benchmark poses a formidable
challenge for the ROSETTADESIGN fixed backbone design
algorithm. Several different metrics were used during
benchmarking to assess the quality of designed proteins.

Figure 2. (A) Percent change in overall sequence composition between native and designed proteins for all 100 structures in the five-way cross-
validation set. The black bars show the rms percent composition change. (B) Percent PSSM recovery for all 100 structures in the five-way cross-
validation set. The black bars show rms percent PSSM recovery. (C) Percent sequence recovery for all 100 structures in the five-way cross-validation
set. The black bars show rms percent sequence recovery.
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Percent PSSM recovery was the primary benchmarking metric
used in the study. Percent PSSM recovery was calculated as the
percentage of residues that were designed as residues with a
positive score in the PSSM of the native protein. In addition,
the percent sequence recovery was measured as the percentage
of residues that remained as the native residue after design.
The percent PSSM recovery per residue, percent sequence

recovery per residue, and the change in overall sequence
composition were also calculated for each designed protein.
Percent PSSM recovery per residue is calculated as
(num_pssm_recove red)/(num_des i gned) , whe re
num_pssm_recovered is the number of residues with a given
identity that were designed to a residue with a positive PSSM
score and num_designed is the total number of residues
designed. The percent sequence recovery per residue was
calculated as (num_recovered)/(num_designed), where
num_recovered is the number of residues with a given identity
that were designed to an identical residue. In addition to
calculation of the overall percent sequence recovery, sequence
recovery by chemical group was also calculated. In this metric,
residues were grouped into the categories polar (Ser, Thr, Asn,
and Gln), nonpolar (Ala, Val, Leu, Met, and Ile), aromatic
(Phe, Tyr, and Trp), charged (Lys, Arg, His, Asp, and Glu), and
other (Cys, Pro, and Gly). A residue was counted as recovered
if it was mutated to another residue within the same group.
The percent sequence composition change per amino acid

type was calculated as (d − n)/(num_designed), where d is the
number of designed residues of a given type and n is the
number of native residues. To compute the change in overall

sequence composition, a root-mean-square (rms) deviation
method was used. The rms percent sequence composition
change was calculated as follows, where statistical_metric is one
of the metrics described above (shown as black bars in Figures
2 and 3):

All of the metrics described above were calculated for the
entire protein, as well as the deeply buried region, surface
region, and a boundary layer between the two. For this study,
the buried region is defined as all residues with an NV score
between 0.00 and 0.24, the boundary is defined as residues with
an NV score between 0.25 and 0.39, and the surface region is
defined as residues with an NV score between 0.40 and 1.00.
The performance of the optimized energy functions via these
benchmarks was compared to the performance of the standard
ROSETTADESIGN energy function.
The benchmarks described above are intended as a measure

of how well ROSETTADESIGN is accomplishing its goal of
generating low-energy, native-like protein sequences. In a well-
optimized energy function, we expect that the percent PSSM
recovery will increase compared to the standard ROSETTADESIGN

energy function. We also expect that the percent sequence
recovery will remain similar to that obtained with the standard
energy function. Finally, we expect that a well-optimized energy
function will exhibit smaller biases in sequence composition

Figure 3. (A) Percent change in overall sequence composition between native and designed proteins for all 42 structures in the independent
benchmark set. The black bars show the rms percent composition change. (B) Percent PSSM recovery for all 42 structures in the independent
benchmark set. The black bars show rms percent PSSM recovery. (C) Percent sequence recovery for all 42 structures in the independent benchmark
set. The black bars show rms percent sequence recovery.

Table 1. Percent PSSM Recovery and Percent Sequence Recovery by Degree of Burial for 100 Proteins Used in Optimizationa

percent PSSM recovery (%) percent sequence recovery (%)

standard reference NV environment KBP standard reference NV environment KBP

buried 73.4 77.1 78.9 64.9 66.5 65.5
boundary 72.1 75.3 77.3 44.3 46.6 45.5
surface 70.4 74.4 75.9 32.8 35.9 35.5
overall 72.0 75.6 77.2 45.7 48.1 47.3

aStandard refers to the standard energy function. Reference refers to the modified standard energy function in which the reference energies were
reoptimized. NV environment KBP refers to the optimized energy function incorporating the NV environment energy term.
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compared to proteins designed with the standard energy
function.

■ RESULTS
The percent PSSM recovery and percent sequence recovery
calculated for the 100 proteins used in the five-way cross
validation are listed in Table 1. The results of PSSM recovery
and sequence recovery analysis show that the optimized NV
environment KBP energy function exhibits a 5.2% improve-
ment in percent PSSM recovery compared to the standard
energy function and that 3.6% of this improvement was a result
of reference energy optimization. The NV environment KBP
energy function showed a 1.6% improvement in percent
sequence recovery compared to the standard ROSETTADESIGN

energy function and a 2.4% improvement if only reference
energies are optimized.
The percent change in composition between native and

designed sequences for the 100 proteins used in the 5-fold cross
validation is shown in Figure 2A. Proteins designed with the
NV environment KBP energy function show a decrease in the
average magnitude of sequence composition biases introduced
during design compared to proteins designed with the standard
energy function. Proteins designed with the standard energy
function exhibit an rms percent change in sequence
composition of 2.0%, while proteins designed with the NV
environment KBP show an rms percent change in sequence
composition of 1.0%. Figure 2B shows that rms per residue
PSSM recovery increased from 3.8% with the standard energy
function to 4.2% with the NV environment KBP, and Figure
3C shows that rms per residue sequence recovery remained
relatively constant between the standard energy function and
NV environment KBP.
The energy functions produced with the five-way validation

were averaged to produce a single energy function; the
reference energies of this averaged function were optimized,
and the benchmarking analysis used above was repeated using
the averaged energy function. In this case, the independent
benchmark set of 42 proteins was used. Table 2 shows the
percent PSSM recovery and percent sequence recovery
calculated for the 42 proteins designed using the averaged
energy function. The NV environment KBP showed an 8.8%
improvement in PSSM recovery compared to the standard
energy function and that 3.8% of this improvement was a result
of the reference energy optimization. The NV environment
KBP showed a 3.2% overall improvement in sequence recovery,
of which 1.9% was due to the reference energy optimization.
When sequence recovery is broken down by group (Figure

4), a large improvement (decrease) in the percentage of
unrecovered buried charged residues is observed; from 8.78 to
1.96% unrecovered residues function in the 100-protein
benchmark set. Additionally, a decrease from 8.77 to 3.46%
unrecovered nonpolar residues on the surface is observed.

Additionally, Figure 4 reveals a fundamental difference in the
two data sets. The lower recovery values seen in all categories
in the 42-protein benchmark set suggest that it is a much more
challenging target for design than the 100-protein benchmark
set used in optimization. The proteins of the 42-protein
benchmark set are substantially larger (average length of 207
residues) than those in the 100-protein benchmark set (average
length of 120 residues). Each additional residue drastically
increases the number of possible sequences to consider,
decreasing the probability of a high-quality design. Despite
this more challenging independent benchmark, improvement
was still observed.

■ DISCUSSION

The results of both the 100-protein five-way cross validation
and the 42-protein independent benchmark set are consistent.
In both cases, introduction of the NV environment KBP into
the energy function and optimization of the energy function
weights lead to an overall improvement in the quality of
designed sequences. As the independent benchmark set tests an
averaged scoring function that would be generally useful, the
remaining analysis will focus on this benchmark set.
The results of the benchmarking show that, in general,

structures designed using the NV environment KBP exhibit
smaller conformation biases and more evolutionarily favorable
mutations. A detailed analysis of these results also provides

Table 2. Percent PSSM Recovery and Percent Sequence Recovery by Degree of Burial for 42 Proteins Used in Benchmarkinga

percent PSSM recovery (%) percent sequence recovery (%)

standard reference NV environment KBP standard reference NV environment KBP

buried 68.0 70.7 76.0 49.5 49.8 51.5
boundary 66.1 70.6 75.7 32.1 34.1 35.3
surface 67.2 72.2 75.8 22.7 26.3 27.3
overall 67.4 71.2 75.9 35.7 37.6 38.9

aStandard refers to the standard energy function. Reference refers to the modified standard energy function in which the reference energies were
reoptimized. NV environment KBP refers to the optimized energy function incorporating the NV environment energy term.

Figure 4. Percentage of unrecovered residues (number of recovered
residues divided by total number of residues in the benchmark set) by
amino acid category in the 100- and 42-protein benchmark sets. The
color scale ranges from white (small number of mistakes) to red (large
number of mistakes). In this metric, residues were grouped into the
categories polar (Ser, Thr, Asn, and Gln), nonpolar (Ala, Val, Leu,
Met, and Ile), aromatic (Phe, Tyr, and Trp), charged (Lys, Arg, His,
Asp, and Glu), and other (Cys, Pro, and Gly). A residue was counted
as recovered if it was mutated to another residue within the same
group.
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some insight into the behavior of the ROSETTADESIGN scoring
function.
Because of the lack of an explicit water model in

ROSETTADESIGN, the standard ROSETTADESIGN energy function
is dominated by the solvation free energy potential. As a result,
there are few constraints on amino acid mutations on the
protein surface. Because of this lack of constraints, proteins
designed with the standard energy function exhibit large biases
in sequence composition on the protein surface. Proteins
designed with the standard energy function show large numbers
of aromatic residues on the protein surface. Specifically, there is
a 3.1% increase in the number of phenylalanines, a 1.9%
increase in the number of tryptophans, and a 2.5% increase in
the number of tyrosines on the protein surface in the
benchmark set designed with the standard ROSETTADESIGN

energy function compared to the native structure. Proteins
designed with the NV environment KBP show a large reduction
in these biases. Proteins designed with the NV environment
KBP showed a 1.4% increase in the number of phenylalanines, a
0.8% increase in the number of tryptophans, and a 1.5%
increase in the number of tyrosines compared to native
proteins. While still large, these biases are much smaller than
the biases observed with the standard energy function.
It was expected that improvements in the quality of surface

sequence design would be the primary benefit of the NV
environment KBP. However, an analysis of the overall PSSM
recovery, sequence recovery, and sequence composition biases
suggests that the improvement given by the NV environment
KBP implementation occurred across the board rather than
merely at the protein surface. Table 2 shows the overall impact
of the NV environment KBP at various levels of burial. The
percent PSSM recovery improved using the NV environment
KBP by 8.0% in the buried region, 9.6% in the boundary region,
and 8.5% on the surface region compared to the standard
energy function. The percent sequence recovery improved by
2.0% in the buried region, 3.2% in the boundary region, and
4.6% in the surface region compared to the standard energy
function.
When percent sequence recovery is broken down by group

(Table 2), a large increase in the recovery of buried charged
residues is observed, with a 6.2% increase compared to the
standard energy function. Additionally, a 3.8% increase in
recovery of nonpolar residues is observed on the surface. Not
all groups show improvement, and this is expected, as the
scoring function was not directly optimized for percent
sequence recovery.
While the overall percent changes are relatively small, these

changes are both statistically and scientifically significant. To
assess the statistical significance of the data, standard deviations
were calculated and are listed in Tables 3 and 4 of the
Supporting Information. The standard deviations were
calculated for both percent PSSM recovery and percent
sequence recovery. Each of the five scoring functions generated
during the five-way cross-validation weight optimization using
100 proteins was used to design the independent set of 42
proteins. The standard deviations of PSSM and sequence
recovery are listed in Tables 3 and 4 of the Supporting
Information. The standard deviations listed in Tables 3 and 4 of
the Supporting Information range from 0.1 to 1.2%. The
average error is 0.4% and therefore smaller than the observed
improvements in recovery rates.
It is important to consider not only the absolute change in

percent recovery but also the change relative to the maximum

possible recovery value. In the case of sequence recovery, the
maximum possible sequence recovery can be estimated by
analyzing the amino acids tolerated in each position in BLAST-
derived PSSMs. In this case, the average percentage of time that
the native residue is seen in the PSSM is used as an estimate for
expected sequence recovery. For the 100-protein benchmark
set, the average was 34% with a standard deviation of 12%,
while in the 42-protein benchmark set, the average was 34%
with a standard deviation of 7%. While the achievable sequence
recovery is somewhat higher because of correlation between
individual positions, these values suggest that sequence
recovery rates of 40−50% would approach the maximum.
Tables 1 and 2 show that for the 100-protein benchmark set,
the total overall sequence recovery is 45.7% with the standard
energy function and 47.0% with the NV environment KBP. For
the 42-protein benchmark set, the total overall sequence
recovery is 35.7% with the standard energy function and 38.9%
with the NV environment KBP. This explains the relatively
small increases in sequence recovery, as current recovery values
are approaching the practical maximum. For that reason, we
introduce the PSSM recovery value. In this context, it is
important to note that the scoring functions were not directly
optimized for sequence recovery but rather PSSM recovery. As
a result, it is not surprising that the sequence recovery is not
necessarily maximized during optimization.
In the case of PSSM recovery, it is reasonable to expect that

100% PSSM recovery is unreachable as evolution might not
have sampled all amino acids tolerated in a sequence position.
A more realistic value for maximum possible PSSM recovery is
between 80 and 90%, though the exact value of this upper
bound is difficult to estimate. PSSM recovery with the standard
energy function was 72.0%. The observed increase to 77.2%
with the NV environment KBP represents a substantial increase
relative to the 80−90% maximum and the 72% starting point.
Generally, improvements in sequence recovery rates have been
moderate when altering the energy function,5 as the major
contributors to the overall energy are already fine-tuned and
remain unaltered.
Comparison of PSSM and sequence recovery results between

the 42-protein benchmark set and the 100-protein set illustrates
that the performance of the ROSETTADESIGN algorithm varies on
the basis of the characteristics of the protein being designed.
For example, Tables 1 and 2 show the overall sequence
recovery for proteins designed with the standard energy
function. The overall recovery for the 42-protein benchmark
set was 35.7%, while the overall recovery for the 100-protein
benchmark set was 45.7%. This substantial difference is likely a
result of the different criteria used to select the proteins in each
set. The proteins in the 42-protein benchmark set are larger
than those in the 100-protein set and will therefore have a
larger total surface area and thus be more challenging targets
for design.
Despite the difference inherent to different design targets,

these values are similar to those obtained in the literature.
Schneider et al. designed a set of proteins with 89−223 amino
acids on the basis of high-resolution crystal structures. They
observed surface sequence recovery rates of 22 ± 11% and
buried recovery rates of 56 ± 13.7% when designed with
ROSETTADESIGN.11 These values are similar to those seen in
Tables 1 and 2. Additionally, Sharabi et al. reported overall
sequence recovery values between 40 and 70% depending on
the weights of the scoring function used during their design.12
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These numbers are within the range of sequence recovery
values obtained during the experiments described here.
In addition to improvements in PSSM and sequence

recovery, the degree of sequence bias seen in the buried and
boundary regions of designs made using the NV environment
KBP decreased. When all residues in the benchmark set are
considered, proteins designed with the NV environment KBP
have an rms percent composition change of 2.8% compared to
the native protein, while proteins designed with the standard
energy function have an rms percent composition change of
2.9% (Figure 3A). When this overall value is broken down by
region, the buried region designed with the NV environment
KBP shows an increase in rms percent composition change
compared to the standard energy function from 4.2 to 4.5%, the
boundary region shows a decrease from 3.4 to 2.7%, and the
surface region shows a reduction from 2.9 to 2.4%. While the
improvements in sequence composition bias are minimal,
Figure 3B shows increases in rms per residue PSSM recovery
from 3.8% with the standard energy function to 4.2% with the
NV environment KBP. Additionally, Figure 3C shows increases
in rms per residue sequence recovery from 2.4% with the
standard energy function to 2.6% with the NV environment
KBP energy function, which is expected given the optimization
of the scoring function toward PSSM improvement.
An investigation of the optimized weights provides some

insight into the cause of the improvements in sequence design.
Tables 1 and 2 of the Supporting Information show the scoring
function and reference energy weights of the standard energy
function and the optimized NV environment KBP. When the
NV environment KBP term is added to the energy function, the
weight of the free energy solvation potential decreases from
0.65 in the standard energy function to 0.56 in the NV
environment KBP. The NV environment KBP term has a value
of 1.01. As discussed earlier, in the standard energy function,
the reference energies and solvation free energy potential are
the dominant forces on surface residues because of the lack of
explicit inter-residue interactions. Because the penalty given by
the solvation free energy potential for apolar residues on the
surface is relatively weak, the weight of this potential will need
to be increased for it to adequately affect surface residues.
However, because the energy function is applied evenly,
regardless of the degree of burial, the increase in weight
necessary to maintain a reasonable protein surface may cause
the solvation free energy potential to apply too strongly to the
boundary region. As the burial level increases, the number of
inter-residue interactions will also increase, which explains the
decrease in improvement in sequence bias seen in more highly
buried regions of the protein. This idea is supported by the
decrease in free energy solvation potential weight observed in
the NV environment KBP energy function. The NV environ-
ment KBP provides additional information about protein
surface composition, reducing the dominance of the free
energy solvation potential. Figure 5 shows the effect of the NV
environment KBP on the overall scoring function. All proteins
used in the 100-protein benchmark set were scored using both
the standard ROSETTADESIGN energy function and the optimized
NV environment KBP energy function. The average magnitude
of each scoring term for each buried and surface residue was
calculated and converted to the percentage of the total energy
for each residue to measure the influence of each scoring term.
We observe that the addition of the NV environment KBP term
decreases the influence of the reference energies, solvation free
energy term, and the attractive and repulsive terms throughout

all degrees of burial. Specifically, the influence of the solvation
free energy decreases from 21 to 16% for buried residues and
from 24 to 21% for surface residues. Additionally, the influence
of the reference energy decreases from 8 to 5% on the surface,
though it remains relatively unchanged for buried residues. The
attractive and repulsive forces also change somewhat, with a
decrease in influence from 60 to 57% in buried residues and 48
to 46% in surface residues. This change in influence is
significantly smaller than the change in influence seen in the
reference and solvation free energy functions. The NV
environment KBP was designed to address shortcomings in
the design of the protein surface. These shortcomings are the
result of the energy function failing to model aspects of the
protein surface that are not completely described through the
solvation and reference energies. To achieve reasonably good
performance despite these inaccuracies, both energy terms are
overweighted in the standard energy function. As expected,
addition of the NV environment KBP term reduces the impact
of solvation and reference energies on the surface. As these
adjustments apply throughout all degrees of burial, the
artificially inflated weight of the solvation and reference
energies can be decreased, improving performance also in the
buried regions of the protein.
In addition to providing information about solvation effects,

the NV environment potential also sheds light on the
evolutionary and environmental forces on protein composition.
Soluble proteins have evolved to be nonaggregative and
generally stable in the environment of a cell. These properties
are difficult to model via physics-based methods, as they arise
from numerous interprotein interactions that are difficult to
explicitly model. The implicit modeling of these environmental
effects accounts in part for the improvements in native-like
sequence design seen during design with the NV environment
KBP. By optimizing the NV environment KBP energy function
to maximize PSSM score rather than sequence recovery, the
energy function is optimized to design proteins similar to those
that are favored evolutionarily, rather than to merely reproduce
the native sequence.
We thank David Baker and Kristian Kaufmann for valuable

discussion and development assistance.

Figure 5. Contribution of individual scoring terms to the overall score
of buried and surface residues. The introduction of the NV
environment KBP reduces the reliance on solvation free energy and
the attractive−repulsive forces at both levels of exposure.
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