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Abstract

Conformational ensembles are increasingly recognized as a useful representation to describe fundamental relationships
between protein structure, dynamics and function. Here we present an ensemble of ubiquitin in solution that is created by
sampling conformational space without experimental information using ‘‘Backrub’’ motions inspired by alternative
conformations observed in sub-Angstrom resolution crystal structures. Backrub-generated structures are then selected to
produce an ensemble that optimizes agreement with nuclear magnetic resonance (NMR) Residual Dipolar Couplings (RDCs).
Using this ensemble, we probe two proposed relationships between properties of protein ensembles: (i) a link between
native-state dynamics and the conformational heterogeneity observed in crystal structures, and (ii) a relation between
dynamics of an individual protein and the conformational variability explored by its natural family. We show that the
Backrub motional mechanism can simultaneously explore protein native-state dynamics measured by RDCs, encompass the
conformational variability present in ubiquitin complex structures and facilitate sampling of conformational and sequence
variability matching those occurring in the ubiquitin protein family. Our results thus support an overall relation between
protein dynamics and conformational changes enabling sequence changes in evolution. More practically, the presented
method can be applied to improve protein design predictions by accounting for intrinsic native-state dynamics.
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Introduction

It has long been known that a protein’s native state is best

represented as an ensemble of conformations rather than as a

single structure [1]. Conformational ensembles provide a detailed

structural picture of protein dynamics. As motions are crucial for

many aspects of protein function, such as molecular recognition

[2–4] and catalysis [5–10], an ensemble description of proteins is

also useful for improving applications of molecular modeling such

as protein-small molecule [11] and protein-protein docking

methods [12,13] as well as protein design [14–19].

Two related concepts characterizing and interpreting properties

of protein conformational ensembles have been proposed: The

first suggests a correspondence between the conformational

heterogeneity present in crystal structures and the native-state

dynamics of proteins observed in simulations and using nuclear

magnetic resonance (NMR) measurements. Several studies

provide support for this idea. Zoete et al. concluded that the

conformational changes present in a large number of crystal

structures of HIV-1 protease reflect the inherent flexibility of

the protein [20]. Vendruscolo and coworkers showed [21]

that side chain relaxation order parameters, reflecting motions

on the picosecond to nanosecond time scale [22–28], could be

described using ensembles of crystal structures of the same

protein or proteins with high sequence identity. Similarly,

modeling ‘‘Backrub’’ motions, a type of conformational change

inspired by alternate side chain and backbone conformations

observed in high-resolution crystal structures [29], has led to

improvements in modeling NMR side chain relaxation order

parameters [30], side chain conformations [31,32] and structural

changes upon mutation [31]. Lange et al. [4] showed that

ensembles derived from ensemble-average-restraint molecular

dynamics (MD) simulations of ubiquitin using Residual Dipolar

Coupling (RDC) data describing picosecond to millisecond

motions [33–41] encompassed conformations similar to those

of ubiquitin in different crystal structures alone and in complex

with different partner proteins. These findings support the

idea that conformational states pre-existing in solution are

selected upon binding. Strong experimental evidence for this

conformational selection model was also provided earlier by
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Wright and colleagues [42] validating previous theoretical

suggestions [43,44].

The second concept proposes a link between the dynamics of a

single protein and the conformational variability explored within

its family of homologous proteins. This link was suggested based

on the similar conformational variability observed in an MD

simulation of myoglobin and in structures of different members of

the globin family [45]. Similarly, Gaussian network models have

suggested common dynamical features of proteins in the same

family [46,47]. Recently, Lee and colleagues proposed that side

chain dynamics measured by NMR relaxation are conserved

across members of the PDZ domain family [48]. Several studies

extended the notion of a relationship between the dynamics of a

single protein and properties of its homologs to the sequence level,

showing that modeled sequences consistent with a single protein

structure had characteristics in common with a multiple sequence

alignment of the protein’s natural family [49]. Further investigat-

ing the relation between protein dynamics and family sequence

variability, other work suggested that sequence diversity [32] and

overlap between modeled and evolutionarily observed sequences

could be increased by incorporating conformational flexibility of

the protein backbone [14–16,50,51].

To combine the two concepts outlined above, here we ask

whether conformational ensembles reflecting variability observed

in protein crystal structures of a single sequence can be

simultaneously related to experimentally determined native-state

solution dynamics of an individual protein, and to the conforma-

tional and sequence variability of the protein’s family. To address

these questions, we investigate two related hypotheses using

ubiquitin as a model system: First, we test whether ensembles

generated using the Backrub motional mechanism (‘‘Backrub

ensembles’’), a model inspired by heterogeneity observed in

experimental protein structures [29], capture properties of

ubiquitin solution state dynamics derived from amide backbone

RDC measurements in 23 alignment media [35]. The motions

modeled using the Backrub mechanism are related to those

described by the 1D-Gaussian Axial Fluctuation (GAF) approach,

which has been used to model residual dipolar coupling (RDC)

measurements [52]. Furthermore, we compare the structural

variation in modeled Backrub ensembles to that seen in a set of 46

crystal structures of ubiquitin [4]. Second, we test whether the

conformational heterogeneity present in Backrub ensembles that

are consistent with the solution dynamics of an individual

ubiquitin sequence resembles the structural diversity observed in

the UBQ subfamily [53]. Furthermore, we predict sequences

compatible with ubiquitin Backrub ensembles using computational

protein design as implemented in Rosetta [54] and test whether

these sequences are similar to the sequences of the UBQ

subfamily.

Supporting our hypotheses, we find Backrub ensembles that are

simultaneously consistent with native-state dynamics reflected in

RDC measurements, the conformational variability observed in

ubiquitin complex structures, and the conformational and

sequence diversity of ubiquitin homologs. As an additional

validation of our approach, we show that Backrub ensembles give

similar agreement with the RDC data as ensembles generated

from RDC-restrained MD simulations [4], and support previous

observations of ubiquitin core flexibility [21] and binding by

conformational selection [4]. Notably, we discover that a common

set of Backrub sampling parameters are simultaneously able to best

fit the RDC data and allow sampling of sequences most similar to

those of the ubiquitin family. Our method to model Backrub

ensembles and sequences consistent with these ensembles may thus

be useful for providing insights into the relationship between

native state dynamics and sequence diversity and for character-

izing evolutionary sequence changes. These results also support

the idea that Backrub ensembles will be useful for engineering new

protein functions through experimental selection from computa-

tionally designed libraries [55,56] that contain sequences accom-

modated by exploiting intrinsic native-state dynamics.

Results

Overall computational strategy
We set out to investigate the hypothesized relations between

conformational changes reflecting observed heterogeneity in

protein crystal structures, native-state protein dynamics and

evolutionarily sampled conformational and sequence diversity in

two steps (Figure 1).

First, to test relation 1, we generated ensemble descriptions of

ubiquitin dynamics using the Rosetta scoring function and several

parameterizations of the Backrub motional model (described

below) without using experimental restraints. Subsequently we

selected ensembles according to their agreement with RDC

measurements (Test 1). This approach is significantly different

from many of the methods applied earlier to find ensembles

compatible with NMR restraints [4,57,58], which incorporated

experimental data directly in the refinement process. Similar to

previous work [4], we compare the resulting Backrub-generated

conformational ensembles with an ensemble of 46 crystal

structures of ubiquitin (Test 2).

Second, we use the insight gained from the comparison of

Backrub ensembles with characteristics of solution-state dynamics

to evaluate relation 2 (Figure 1). We investigate whether Backrub

ensembles that sample the conformational space available on the

RDC timescale have similar conformational variability to that

explored by ubiquitin homologs (Test 3). Moreover, we test

whether sequences consistent with Backrub ensembles fitting RDC

measurements of a single ubiquitin sequence, as predicted by

computational protein design using Rosetta [54], show overlap

with the sequences of the natural UBQ subfamily [53] (Test 4).

Strategy to test relation 1
To test relation 1, our approach first uses unrestrained

conformational sampling with the Backrub motional model to

Author Summary

Knowledge of protein properties is essential for enhancing
the understanding and engineering of biological functions.
One key property of proteins is their flexibility—their
intrinsic ability to adopt different conformations. This
flexibility can be measured experimentally but the
measurements are indirect and computational models
are required to interpret them. Here we develop a new
computational method for interpreting these measure-
ments of flexibility and use it to create a model of flexibility
of the protein ubiquitin. We apply our results to show
relationships between the flexibility of one protein and the
diversity of structures and amino acid sequences of the
protein’s evolutionary family. Thus, our results show that
more accurate computational modeling of protein flexibil-
ity is useful for improving prediction of a broader range of
amino acid sequences compatible with a given protein.
Our method will be helpful for advancing methods to
rationally engineer protein functions by enabling sampling
of conformational and sequence diversity similar to that of
a protein’s evolutionary family.

Sequence and Conformational Diversity
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generate a large set of initial conformations, starting from the

ubiquitin crystal structure (Protein Data Bank (PDB) code 1UBQ).

We use a Monte Carlo protocol consisting of rotamer changes and

Backrub moves. Backrub moves involve selection of a random

peptide segment, followed by a rigid body rotation of all atoms in

that segment about an axis defined by the endpoint C-alpha atoms

[31]. The peptide segment length is chosen at random to be either

2 or 3 residues (denoted in the following as ‘‘maximum segment

length of 3’’; Figure 2A) or between 2–12 residues (‘‘maximum

segment length of 12’’; Figure 2B). 10,000 Backrub-Monte-Carlo

simulations are run to generate 10,000 possible conformations in

an initial set (see Methods for details). The Backrub motional

mechanism thus directly accounts for correlated motions of

continuous peptide segments of up to length 3 or 12. Applying

these moves repeatedly in randomly chosen regions of the protein

using Monte Carlo sampling allows for correlated motions of

residues distant in sequence yet close in tertiary structure.

Correlations between side-chain and backbone dynamics have

also been observed in numerous NMR studies, such as for

Ribonuclease H on the relaxation time scale [59,60] and on the

RDC time scale for ubiquitin [61] and Protein G [38].

Subsequently we select ensembles from the resulting structures

based on their agreement to the RDC measurements as measured

by the Q-factor (Figure 2C), defined as:

Q~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i
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i
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An ensemble selection approach similar to the one described

above has been successfully applied to model relaxation order

parameters using snapshots from MD trajectories [62]. In the

following sections, ‘‘RDC-optimized’’ ensembles are defined as

those undergoing the Q-factor optimization process described in

Figure 2C and ‘‘non-RDC-optimized’’ ensembles are generated by

choosing random ensembles of 50 structures.

To validate our approach, we compare the Backrub-generated

conformational ensembles to reference methods such as snapshots

from an MD simulation in explicit solvent [63] and a set of

representations of the dynamics commonly used to interpret the

motional information present in RDC measurements. One such

representation uses the ‘model-free’ formalism, which provides five

parameters describing the movement of each residue [35,64–66].

Another approach is ensemble-average-restrained (EAR) molecu-

lar dynamics, in which an ensemble of molecules (the ‘‘EROS’’

ensemble) is optimized with respect to a molecular mechanics

force field potential in combination with ensemble-average

restraints on the NMR measurements, including RDCs [4]. We

reason that sampling methods that result in low Q-factors more

closely approximate the conformational space relevant to motions

on the RDC timescale than other models that describe the

experimental data less well.

Correspondence between Backrub conformational
ensembles and RDC measurements of ubiquitin
dynamics (Test 1)

We first tested whether Q-factors of Backrub ensembles selected

according to the strategy described in Figure 2C decreased as the

ensemble size was increased (2, 3, 5, 10, 20, 50 and 100 structures

per ensemble). This behavior would be expected if our description

captures dynamical information contained in the measurements.

Figure 3A shows the Q-factors of RDC-optimized ensembles of

varying size generated with a Backrub maximum segment length

Figure 1. Schematic describing the two main relations evaluated in this work and the tests performed.
doi:10.1371/journal.pcbi.1000393.g001
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of 12 and a simulation temperature of kT = 1.2 (see Methods).

There is a clear trend that the Q-factors of RDC-optimized

ensembles decrease as the ensemble size increases. This trend

indicates that adding more structures allows a better representa-

tion of the RDC measurements and further suggests that these

ensembles are representative of conformations that are populated

on the timescale of the experiments (even though the Monte Carlo

simulations are agnostic to timescale). This result is not simply

explained by inclusion of more degrees of freedom and overfitting,

as cross-validation analysis supports an optimal ensemble size of

around 50 (Table S1). We use this ensemble size in the

experiments below.

Varying the temperature and the maximum segment
length affects the agreement of RDC-optimized Backrub
ensembles with RDC measurements

The RDC-optimized Backrub ensemble described above has a

Q-factor of 0.086 over regions of regular secondary structure (see

Methods) and was found by comparing motional models using

different Backrub sampling parameters. The first Backrub

parameter we varied was the maximum segment length (as

described above and illustrated in Figure 2A and B, the longest

peptide segment rotated about an axis defined by the segment

endpoint C-alpha atoms). The Backrub conformational change

observed in ultra-high resolution X-ray structures consisted of

concerted 2- and 3-residue Backrub moves [29]; thus we first

tested a maximum segment length of 3. In a previous study [30],

we showed that ensembles of structures generated using this

maximum segment length improved predictions of side-chain

relaxation order parameters. To test the relevance of larger-scale

changes, we also tested a maximum segment length of 12, which

included moves of all intermediate segment lengths from 2–12. To

measure the effect of varying the amplitude of motion, we tested a

range of temperatures for the Metropolis Monte Carlo simulations

from kT = 0.3 to 4.8. Each simulation was run for 10,000 steps.

The resulting mean pair-wise root mean squared deviations

(RMSDs) to the ubiquitin X-ray structure 1UBQ of the Backrub

ensembles spanned the range of 0.2 Å to 0.5 Å for the maximum

segment length of 3 simulations, and spanned the range of 0.3 Å to

3.2 Å for the maximum segment length of 12 simulations (see

Methods for details).

Figures 3B shows the RDC-optimized ensembles of size 50

with lowest Q-factor for different initial Backrub starting sets of

10,000 structures with maximum segment length of 12 and

different simulation temperatures. Simulation temperatures of

kT = 0.3, 0.6, 1.2, 2.4 and 4.8 gave mean pair-wise RMSD values

to the ubiquitin X-ray structure 1UBQ of 0.3 Å, 0.5 Å, 0.9 Å,

2.1 Å and 3.2 Å, respectively. For the maximum segment length

of 12, the lowest Q factor is 0.086 at kT = 1.2 and for the

maximum segment length of 3 the lowest Q factor is 0.089 at

kT = 2.4 (see Table S2 for results for all parameters). To compare

these two ensembles, we performed cross-validation with four

RDC datasets of N-C9 couplings and four datasets of H-C9

couplings (see Methods for details). The resulting Rfree values for

these ensembles were 18.0% and 21.3%, respectively (Table S1).

Thus the ensemble generated using a maximum segment length of

12 appears to be a better representation of the dynamics in the

RDC measurements; we focus on this ensemble in the analyses

below.

The structural variability of the ensemble is illustrated in

Figure 4A. The average NH order parameter in regular secondary

structure elements is 0.76, the same as that computed for the

Figure 2. Description of the Backrub motional mechanism and ensemble selection. Backrub moves for (A) tripeptide segments and (B)
segments of arbitrarily length from 2 through 12 residues. (C) Flowchart of the process used to select ensembles to match the RDC measurements.
doi:10.1371/journal.pcbi.1000393.g002
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model free analysis (0.77) described in Lakomek et al., but lower

than that computed for the EROS ensemble (0.83) [4,35].

RDC-optimized Backrub ensembles match RDC
measurements comparably to or better than other
methods

We compared the Q-factor of the RDC-optimized Backrub

ensemble to the Q-factors from various other ubiquitin ensembles

(Figure 3C): the Self-Consistent RDC-based Model-free (SCRM)

description (an analytical description of the RDCs with five

parameters per residue that does not provide an explicit all atom

structural representation of the motions) [35], an ensemble of 46

X-ray structures of ubiquitin alone and in different complexes

(henceforth called the ubiquitin X-ray ensemble) as used in

reference [4], three sets of NMR structures (1D3Z, 1UD7, and

1G6J), three molecular dynamics (MD) ensemble-average-restraint

Figure 3. Q-factors of RDC-optimized ensembles. (A) Increasing Backrub ensemble size improves the agreement with the RDCs. Maximum
segment length of 12 with kT = 1.2. (B) Q factors vs. RMSD of the RDC-optimized Backrub ensemble with the lowest Q factor at each simulation
temperature for maximum segment length = 12. Error bars display Qexperimental_uncertainty (see Methods). (C) Q factors of the SCRM model-free
description, the RDC-optimized Backrub ensemble, the ubiquitin 46-member X-ray ensemble, 3 sets of NMR structures (1G6J, 1UD7, and 1D3Z), 3
molecular dynamics simulations with ensemble-average NMR restraints (1XQQ, 2NR2, and EROS), and a 100-nanosecond MD simulation [63]. For the
X-ray structures, amide hydrogen atoms were added using the Rosetta molecular modeling program with an NH bond length of 1.01 Å.
doi:10.1371/journal.pcbi.1000393.g003
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(EAR) ensembles (1XQQ, 2NR2, EROS PDB code 2K39)

[4,57,58], and snapshots from a 100-nanosecond MD simulation

[63]. We also examined the root mean squared error in the RDCs

as a measure of quality of fit, and the results were similar (Figure

S1A). The RDC-optimized Backrub ensemble has lower Q-factors

than ensembles generated using other methods, except for the

SCRM description [35] and the EROS ensemble, both of which

were fit with the same dataset of RDC measurements as the

Backrub ensembles. Not surprisingly, the SCRM Q-factor is the

lowest because it is an analytical description fit to the RDCs. The

EROS ensemble was created with an approach where the RDCs

are incorporated into the potential function of an ensemble MD

simulation and this approach gives very low Q-factors. An analysis

of structural quality measures of Backrub and other conforma-

tional ensembles is given in Text S1 and Figure S2. The RDC-

optimized Backrub ensembles also have similar Rfree values from

cross-validation: 18.0%, 16.1%, 20.0%, 17.8%, and 23.3%,

respectively for the RDC-optimized Backrub ensemble, the EROS

ensemble, the 1D3Z structures, the ubiquitin X-ray ensemble and

the ensemble of MD snapshots (Table S1).

One important criterion with which the various ensembles of

ubiquitin can be assessed, as mentioned above, is whether an

ensemble matches the RDCs better than any single structure

within it. If this is the case, dynamical information contained in the

Figure 4. Flexibility of different ubiquitin ensembles. (A) Structures of the C-alpha backbone traces of a RDC-optimized 50-member ensemble
of maximum segment length of 12 with kT = 1.2. (B and D) Mean C-alpha difference distance values of indicated ensembles mapped onto the 1UBQ
X-ray structure. (C) Theoretical B-factors from a Gaussian Network Model. Color coding for B, C and D: Green: 0–25% of the max value in the non-loop
regions; Yellow: 25–50% of the max; Orange: 50–75% of the max; Red: 75–100% of the max; Grey: loop regions that were not included in the fit to the
RDC measurements.
doi:10.1371/journal.pcbi.1000393.g004
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experimental measurements can be interpreted by analyzing the

conformational variability in the ensemble. The RDC-optimized

Backrub ensemble, the MD-EAR ensembles (1XQQ, 2NR2 and

EROS PDB code: 2K39) and, the ubiquitin X-ray ensemble and

the ensemble of MD structures have improved Q-factors over the

best single structure (Figure 3C). The two MD-EAR ensembles

that were fit to relaxation NMR measurements (1XQQ and

2NR2) have small fractional improvement in Q-factor, suggesting

that the dynamic information present in the RDCs may be

different from the information present on the shorter time scale

relaxation measurements; this observation is supported by the

different pattern of order parameters observed between these two

classes of measurements [35]. The Backrub and the EROS

ensembles show the largest fractional Q-factor improvement. Note

that this does not contradict the fact that Backrub moves were able

to improve modeling of faster time-scale picosecond-nanosecond

side-chain motions [30]; the Backrub ensembles used in our

previous work were not selected for agreement with the RDCs and

the simulation temperature used was lower, resulting in smaller

motional amplitudes.

The three sets of NMR structures (1D3Z, 1UD7, and 1G6J) do

not show an improvement in the Q-factor over the best single

structure. For the 1D3Z NMR structures, a subset of the RDCs

were used in the refinement and, as a result, the Q-factor

(Q = 0.107; calculated over all 23 datasets used in this paper) is

lower than for the other NMR structures. The Q-factor of the

lowest single 1D3Z NMR structure indicates that the 1D3Z NMR

structure is a good representation of the average structure.

We also used the strategy described in Figure 2C to generate

RDC-optimized ensembles consisting of structures from the

various ubiquitin ensembles (Figure S1B). The Q-factor decreased

substantially for the ubiquitin X-ray ensemble (34% lower Q-

factor), the MD-EAR ensembles, (41%, 49% and 31% decrease in

Q-factor for 1XQQ, 2NR2, and EROS, respectively) and the

ensemble of snapshots from the 100-ns MD simulation (64%

decrease). These findings are consistent with the results above that

all ensemble types except the three sets of NMR structures provide

insight into the RDC dynamics. The Q factors of the RDC-

optimized ensembles of ubiquitin X-ray structures (Q = 0.089) and

the MD snapshots (Q = 0.069) are quite similar to the Q factors of

the best RDC-optimized Backrub ensemble. This latter result

suggests that the 100 ns explicit water MD simulation, although

short in comparison to the RDC timescale, may allow regions of

ubiquitin to locally sample conformations in agreement with the

RDC measurements; this is consistent with the observation from

other studies that relatively short MD simulations capture a

significant fraction of the motions measured by RDCs [67,68].

Longer timescales or analyses of multiple trajectories may be

needed to sample combinations of these conformations throughout

the ubiquitin structure. This idea was suggested by Henzer-

Wildman et al. [8] to explain the ability of adenylate kinase to

sample substates in nanoseconds along the open-closed trajectory

that exchanged on the order of micro- to milliseconds.

Correspondence of conformational variability in Backrub
ensembles and structural heterogeneity of ubiquitin in
multiple crystal structures (Test 2)

To characterize the conformational variability of different

regions of the protein in our ensembles, we calculated C-alpha

difference distance matrices (see Methods and Figure S3A) [45].

These matrices show the motion of each residue with respect to all

other residues. For clarity, we collapse these matrices onto a single

dimension that represents the average C-alpha difference distance

with respect to other residues in the protein (Figure S3B). This

metric is sensitive to motions relative to those of other residues in

the ensemble, as opposed to C-alpha RMSD, which is sensitive to

changes relative to one conformation in the ensemble. Figures 4B

and 4D show these C-alpha difference distance values mapped

onto the ubiquitin structure (see Methods).

Supporting relation 1, the pattern of motion of the ubiquitin X-

ray ensemble and the RDC-optimized Backrub ensemble show

substantial similarities. In both these ensembles the most flexible

regions are the C-terminal end of the helix and the N-terminal end

of beta strand 2. This result is consistent with the suggestion of

Lange et al. [4] that the native state dynamics of ubiquitin

encompass the conformational flexibility found in crystal struc-

tures of ubiquitin bound to different partners, supporting a

conformational selection model for binding. Moreover, the

patterns of motions of the RDC-optimized Backrub ensemble

are similar to the EROS and the MD ensembles despite their

different amplitudes. In addition, RDC-optimized and non-RDC-

optimized ensembles are similar to each other with respect to the

average C-alpha difference distance matrices shown in Figure 4B.

Text S1 and Figure S4 give a more detailed comparison of RDC-

optimized and non-RDC-optimized conformational ensembles.

We also investigated the differences between the RDC-

optimized Backrub and the ubiquitin X-ray ensemble flexibilities

in light of the errors in the calculated RDC values in these regions

(Figure 4B and Figure S3C). The differences in flexibility of these

ensembles are mainly around the C-terminus of beta strand 1 and

the alpha-helix. In the C-terminal tail of beta strand 1, residue 6

has some of the highest errors in the Backrub ensemble. Since the

flexibility is low in this region in both the X-ray ensemble and the

EROS ensemble, the Backrub model may overestimate the

flexibility. In the helix, the relative amplitude of flexibility is also

higher in the Backrub ensemble than in the X-ray ensemble;

however, the pattern of flexibility is quite similar (see Figure S3C).

Interestingly, the helix C-terminal residues in the X-ray ensemble

show less agreement between experimental and back-calculated

RDCs (Figure S3C), implying that the high flexibility in this region

for the Backrub ensemble is likely to be a better representation of

the RDC data. This observation agrees with the amplitude and

pattern of flexibility in this region of the EROS ensemble. In

addition, we observe correspondingly higher flexibility in the helix

in a structural alignment of members of the ubiquitin family

(Figure 4D), as discussed further below (Test 3).

As a final point of comparison, we applied a Gaussian network

model (GNM) [69]. These models have been used to describe slow

motions in proteins. Figure 4C shows the GNM computed B-

factors mapped onto the ubiquitin structure, displaying confor-

mational variability similar to the other methods and the X-ray

ensemble, although some differences compared to the X-ray

ensemble are apparent, such as along the alpha-helix and in beta

strand 2.

Structural and functional insights from ubiquitin
conformational ensembles

We showed above that our RDC-optimized Backrub ensemble

(i) gives similar Q-factors to reference ensembles including an

RDC-restrained MD ensemble (EROS) [4], a ubiquitin X-ray

ensemble and an ensemble of snapshots from a 100-nanosecond

MD trajectory [63] and (ii) has similar regions of structural

variability (Figure 4B). As an additional point of comparison and

validation of our approach, we asked whether the RDC-optimized

Backrub ensemble also supports other structural and functional

insights derived from previous ensemble descriptions of ubiquitin.

Lindorff-Larsen et al. [58] as well as Richter et al. [57] used MD

simulations with side chain and backbone relaxation order

Sequence and Conformational Diversity
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parameters as restraints. These ensembles displayed liquid-like

flexibility of side chains buried in the protein core. The RDC-

optimized Backrub ensemble also has this property, with buried or

near buried residues 13, 23, 44, 61, and 67 correctly modeled as

flexible with calculated order parameters close to their respective

values from NMR relaxation experiments. As shown in Figure 5,

Ile 13 chi2, Ile 44 chi2, and Leu 67 chi2 have modeled order

parameters within 0.04 of the experimental values. Ile 13 chi 1 and

Ile 61 chi2 have modeled order parameters that are substantially

lower than the experimental values but these differences can be

due to the short timescale of the relaxation measurements

compared to the longer timescale of the RDCs fit by the RDC-

optimized Backrub ensemble. (See Figure S5 for comparison to

more side chains analyzed in [58].) Side chain order parameters

derived from the 100 ns MD simulation discussed earlier are also

shown in Figure S5 for comparison. In several cases, the side chain

order parameters from the MD simulation are higher than those

obtained from the relaxation experiments, possibly due to

sampling limitations at the side chain level. Exceptions are the

modeled order parameters for L15 chi2 and I61 chi2, which are

significantly lower than the measured relaxation order parameters

(this may be because the timescale of the MD simulation is longer

than the rotational correlation time of the molecule).

Ubiquitin has several hotspots shown to be important in

recognition of different binding partners: Ile 44, Asp 58, and His

68. These were identified as rigid in the order parameters of the

EROS ensemble [4]. Residues Ile 44 and His 68 are also among

the most rigid in the Backrub ensemble according to analysis by

order parameters and C-alpha distance difference value (Figure

S4G and S3B, respectively). Likewise the secondary structure

residues observed to be most flexible by order parameters

calculated from the EROS ensemble are those in the N-terminus

of strand 2 which our analysis also observes to be quite flexible.

We find flexible regions in the C-terminus of the alpha helix that is

reflected in the C-alpha distance difference value of the EROS

ensemble but not in its order parameter.

Strategy to test relation 2
Our results above provide support for the hypothesis of a

correspondence between the properties of Backrub-derived

conformational ensembles, solution-state dynamics reflected in

NMR measurements and a conformational ensemble of 46

Figure 5. Chi angle distributions of residues in or near the core of ubiquitin. Distributions are shown for the best RDC-optimized Backrub
ensemble with maximum segment length of 12 and kT = 1.2, as well as modeled and experimental relaxation order parameters corresponding to
these chi angles (chi1 and chi2 correspond to the Cc and Cd methyl groups, respectively). The Leucine Cd methyl group relaxation order parameters
were averaged.
doi:10.1371/journal.pcbi.1000393.g005
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experimental crystal structures of ubiquitin. To broaden this result

and shed light more generally on a link between protein dynamics

and evolution, we next ask whether there is also a correspondence

between the dynamics of a single protein sequence and the

conformational variability explored in its protein family to

accommodate sequence changes during evolution (relation 2;

Figure 1). In order to test this relation, we first compare the

conformational variability present in the RDC-optimized Backrub

ensemble with that observed in a structural alignment of 20

members of the UBQ subfamily (Test 3). Second, we extend this

comparison from structural variation to sequence variation by

comparing sequences modeled on Backrub ensembles to the

sequences of the natural UBQ subfamily (Test 4).

Individual and family conformational variation (Test 3)
To test the correspondence of the conformational variability of

an individual protein and that of its family, we constructed an

ensemble from the available structures of proteins in a multiple

sequence alignment of the UBQ subfamily (see Methods for

details) [53]. We performed a multiple structure alignment of this

20-member UBQ subfamily ensemble using MAMMOTH-mult

[70] resulting in 66 positions that aligned in all proteins (see

Methods). These aligned positions had at most 85% and an

average of 21% pair-wise sequence identity. We calculated the C-

alpha average distance difference matrix for these aligned positions

and Figure 4D shows the average values for each residue in the

matrix mapped onto the 1UBQ structure, as described for Test 2.

The resulting UBQ subfamily ensemble shows high variability

in the C-terminus of the helix and in the N-terminus of beta strand

2, which is strikingly similar to the regions of high flexibility in the

RDC-optimized Backrub ensemble. Thus, we find similar

conformational variability in the structures of the ubiquitin

homologs and in an ensemble fit to the solution state dynamics

of ubiquitin. This correspondence in pattern of flexibility holds

despite the different motional amplitudes of these ensembles: 2.0 Å

and 0.9 Å pair-wise RMSD to the 1UBQ X-ray structure,

respectively, for the UBQ subfamily ensemble and the RDC-

optimized Backrub ensemble.

Modeling of sequence space (Test 4)
We proposed in hypothesis 2 and showed above that there are

similarities in the conformational variability of a single protein and

that of its homologs. Here we extend this idea to ask whether the

sequences compatible with a structural ensemble describing the

dynamics of a single protein are similar to the sequences of the

natural family members. We first tested whether there is a

difference between the sequence spaces consistent with the RDC-

optimized and non-RDC-optimized Backrub ensembles. We

performed computational protein design with Rosetta [54] using

simulated annealing of rotamer conformations and amino acid

identities on each backbone in an ensemble to determine low-

scoring sequences compatible with that ensemble. All positions

were allowed to vary to any amino acid and 1000 low-energy

sequences were generated for each ensemble. In the following, we

use the term ‘sequence space’ to describe the high-dimensional

space of possible sequences of a protein.

To compare the sequence space coverage of the various

ensembles, we used the BLOSUM62 matrix [71] to calculate

the distances between all pairs of sequences. This resulted in a

distance matrix of size NxN (where N is the number of sequences

compared) representing a sequence space of dimensionality N. To

visualize the relative sequence space coverage of different sets of

sequences we collapsed this sequence space into two dimensions

using multidimensional scaling, retaining the two dimensions

containing the most variation in sequence distances (see Methods).

The sequence spaces sampled by the RDC-optimized and non-

RDC-optimized Backrub ensembles with optimal Backrub pa-

rameters (maximum segment length of 12 and kT = 1.2) are very

similar (Figure 6A). This is consistent with the idea that the

Backrub method captures a significant portion of near-native

protein motions, even without directly incorporating the RDC

information into the model. In the following, we use results for

non-RDC-optimized ensembles; the results are similar for RDC-

optimized ensembles.

Next we compared the 2-D sequence space of designs on

various non-RDC-optimized Backrub ensembles to the sequence

space of designs on the ubiquitin X-ray ensemble. Different non-

RDC-optimized Backrub ensembles of maximum segment length

of 12 with varying amplitude (kT = 0.3, 1.2 and 4.8) sample largely

separate sets of sequences (Figure 6B). Sequences move further

away from the sequences sampled using the fixed backbone with

increasing amplitude of motion in the ensemble. Notably, the

Backrub sampling parameters used to generate ensembles which

sample a range of sequences most similar to the 46-member

ubiquitin X-ray ensemble are the same parameters that gave the

lowest Q-factor (maximum segment length of 12 with kT = 1.2),

supporting the hypothesis that the Backrub ensembles are

sampling similar conformational heterogeneity to the ensemble

of ubiquitin X-ray structures (Test 2). Sequences obtained from

the MD ensemble are likewise most similar to the kT = 1.2

amplitude ensemble (Figure S6C and D), although spanning a

somewhat larger region of sequence space.

Finally, to test whether there exists a link between the

conformational heterogeneity of solution dynamical ensembles

and the sequence space compatible with these ensembles (Test 4),

we compared the 2-D sequence space of designs on various

Backrub ensembles to the sequence space of the UBQ subfamily of

the ubiquitin ab roll subfold (Figure 6C). The subfamily sequences

we used came from a high quality manually curated alignment of

36 homologues created using 3D structural analysis [53]. As

shown in Figure 6C, the sequences in these naturally occurring

proteins represent a subset of the sequence space of the non-RDC-

optimized Backrub ensemble (maximum segment length of 12 with

kT = 1.2). In contrast, the UBQ subfamily sequences barely or do

not at all overlap with the sequences from design simulations using

the fixed backbone, or the kT = 0.3 and kT = 4.8 ensembles. We

obtain similar results when considering core residues only (Figure

S6B).

The sequence logo representations in Figure 7A–H for residues

in buried core regions (see Methods) support the correspondence

between the sequence diversity in Backrub ensembles and the

natural family. The predominant amino acid in the UBQ

subfamily is generally recapitulated in the non-RDC-optimized

Backrub ensembles of maximum segment length 12 with kT = 0.3

and kT = 1.2 (e.g. positions 5, 27, 43, 50, 56, 61, and 69). One

notable exception is that the designed sequences fail to recapitulate

the frequently observed glutamine at position 41. Kiel et al. [53]

use this position as the main indicator in categorizing subgroups of

the UBQ subfamily because its presence correlates with the

structure of a nearby loop. The side chain amide nitrogen atom of

Gln 41 forms a buried hydrogen bond with the backbone of

residue 36, which may be responsible for structural specificity of

the loop conformation that we are not accounting for in the design

simulations. Several positions, such as residues 21, 25, 45, 55, 61,

65, and 68, have high sequence entropy in the natural family. The

Backrub ensemble designs recapitulate high sequence entropy for

these residues. Especially for residues 45, 55, 61, and 65 the high
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entropy underscores one of the uses of flexible backbone design, as

with a fixed backbone or low temperature Backrub ensemble only

a few amino acid types predominate at those positions failing to

capture the substantial natural sequence plasticity within the

family. We also generated designs compatible with the trajectory

of the 100-ns MD simulation, which showed similar results to the

RDC-optimized Backrub ensemble overall, but with higher

sequence entropy for several positions (as reflected also in Figure

S6).

Taken together, our results thus indicate that the conforma-

tional sampling methods we use here to match RDC dynamics

produce variability similar to the conformational heterogeneity of

X-ray ensembles (both using different ubiquitin structures as well

as structures from the UBQ subfamily) and may lead to significant

overlap between sequences consistent with modeled ensembles and

the sequence space covered by the natural family. Additionally, it

appears from the similarity of sequences from RDC-optimized and

non-RDC-optimized ensembles that the RDCs have led us to

determine optimal Backrub sampling parameters (Figure 3B) that

can be used prospectively to make modeling predictions.

Discussion

In this work, we describe the application of the Backrub

motional model to create ensembles of structures consistent with

RDC measurements and to sample the conformational and

sequence space of the UBQ subfamily.

The main new aspect of our work is that we link the

conformational dynamics of a single sequence, as reflected by

both RDC data and Backrub ensembles, to conformational

Figure 6. Sampling of sequence space by computational design on different ubiquitin ensembles. (A) Designed sequences on non-RDC-
optimized (light blue), and RDC-optimized (dark blue) Backrub ensembles of maximum segment length of 12 with kT = 1.2. (B) and (C): Low-scoring
designed sequences on the fixed backbone of the X-ray structure 1UBQ (orange); on non-RDC-optimized Backrub ensembles with maximum
segment length of 12 with kT = 0.3 (green), kT = 1.2 (blue), and kT = 4.8 (cyan); and (B) low-scoring designed sequences on the ubiquitin X-ray
ensemble (red), or (C) sequences from the UBQ subfamily (brown). (Note that the dimensions shown in the plots are selected to maximize the
variation of the points in each plot and will differ between plots).
doi:10.1371/journal.pcbi.1000393.g006
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diversity observed in crystal structures of ubiquitin and its family,

and to evolutionary sampled sequence diversity. We achieve this

by applying computational protein design to select low-energy

sequences consistent with Backrub ensembles. The fact that low-Q

factor Backrub ensembles sample a similar sequence space to that

of the ubiquitin X-ray ensemble extends results by other groups

demonstrating the correspondence of solution-state dynamics and

crystallographic heterogeneity [21,35]. In addition, we find that

this designed sequence space consistent with optimal Backrub

ensembles encompasses the sequence space of the UBQ subfamily,

providing evidence for the idea suggested by Davis et al. [29] that

the Backrub motional mechanism may facilitate amino acid

changes during evolution.

We find that RDC-optimized ensembles created with only

certain Backrub sampling parameters were able to reach the

lowest Q-factors, indicating that the conformational space sampled

by these Backrub parameters is the most similar (compared to

other parameters) to the conformations giving rise to the RDC

measurements. However, while we see significant improvements in

Q-factors during the selection protocol, we also find substantial

similarities between RDC-optimized and non-RDC-optimized

Backrub ensembles in patterns of C-alpha RMSD, order

Figure 7. Comparison of sequence profiles of the UBQ subfamily and that of computational designs. Sequence logo plots for (A) the
UBQ subfamily, and low-scoring designed sequences on (B) the 1UBQ fixed backbone, (C) the non-RDC-optimized ensemble created with maximum
segment length of 12 and kT = 0.3, and (D) the non-RDC-optimized and (E) RDC-optimized ensembles with maximum segment length of 12 and
kT = 1.2. Designed sequences on (F) non-RDC-optimized and (G) RDC-optimized ensembles from a molecular dynamics trajectory of 100-
nanoseconds. (H) Designed sequences on the EROS ensemble. Figure created using WebLogo [82].
doi:10.1371/journal.pcbi.1000393.g007
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parameters and designed sequence space. This somewhat

surprising observation could mean that the selection procedure

primarily optimizes for subtle differences in NH-vector orienta-

tions (Figure S7), while other dynamical features that are

commonly characterized (such as the anisotropy of motions) are

essentially indistinguishable between RDC-optimized and non-

RDC-optimized Backrub ensembles. Analysis by cross-validation

shows an improvement in Rfree for RDC-optimized over non-

RDC-optimized ensembles, indicating that other aspects of the

peptide plane orientation are better represented in the RDC-

optimized ensembles. Notably, there are defined Backrub

parameters that simultaneously give the best agreement with the

RDC data (after selection) and the best sequence space overlap

with the natural family, irrespective of whether we apply selection

or not. This could indicate that it is primarily the mechanism and

amplitude of motions that are important, and that, as long as the

amplitude is in the correct range defined by the appropriate

sampling parameters, the Backrub motional model can sample

relevant motions without requiring RDC data. Hence, the

Backrub motional model may be useful (i) to predictively sample

conformations similar to ensembles of bound conformations and

(ii) to use with design to sample the sequence space of the natural

family. Such sampling of sequences likely to be accommodated by

a given protein fold may help improve engineering of new protein

structures, functions and interactions. For example, coupling

backbone ensemble generation and sequence design may be useful

to computationally predict sequence libraries enriched in func-

tional members [56].

There are several potential limitations of the Backrub method,

as applied here. As we implement Backrub in a Monte Carlo

protocol, the timescale of conformational transitions is not taken

into account. Also, the method used here limits the backbone

conformational space sampled to those conformations accessible

with the Backrub mechanism, a restriction which can be alleviated

for example with the addition of small phi/psi changes to the

method or by using analytical methods for local loop closure [72],

which is a superset of the Backrub move. Nevertheless, Backrub

changes have an interesting similarity to the 1D-Gaussian Axial

Fluctuation (GAF) analytical model, a simple motional model that

has been used with success to fit RDCs [52]. A dipeptide Backrub

move (a tripeptide Backrub move is shown in Figure 2A) is similar

to motions described by the 1D-GAF model; thus the Backrub

Monte Carlo protocol, which includes moves of longer peptide

segments incorporated into a Monte Carlo scheme, can be viewed

as a extension of the analytical GAF model to discrete structural

ensembles.

As necessitated by the scarcity of proteins with sufficient RDC

data, we limit our study here to one protein and further work is

needed to extend modeling of protein native state dynamics and

tolerated sequence space to more proteins. However, the

usefulness of the Backrub mechanism for modeling protein

motions is supported by several studies [29–32,73]. Our studies

on ubiquitin provide an interesting benchmark case for future

analyses of the correspondence of individual and family variation.

Analysis of the generated ubiquitin Backrub ensembles allows

several fundamental insights on the relationship between structure,

function, sequence and dynamics. The ubiquitin core flexibility

and a binding mechanism by conformational selection have been

pointed out previously [4,58]. Furthermore, our study allows

characterization of differences between computationally predicted

and evolved protein sequences that may lead to testable

hypotheses on effects not modeled in the simulations, such as

evolutionary pressures to conserve functional residues. An example

is the discrepancy between the predictions and the naturally

occurring glutamine residue at position 41 in ubiquitin. A likely

explanation why our design simulations fail to predict this

preference for glutamine is that we are not taking into account

avoidance of certain non-native conformations due to evolutionary

pressure enforcing structural specificity.

In conclusion, we have tested a method for sampling

conformational diversity using Backrub conformational changes

and shown that it can generate ensembles consistent with

millisecond-timescale measurements of protein dynamics. This

method is computationally more efficient than molecular dynam-

ics-based methods, allowing it to be applied to a variety of protein

modeling tasks such as sequence design. Notably, we find that the

method recapitulated many of the structural properties of the

RDC-optimized Backrub ensembles even when the RDC

measurements were not incorporated in the sampling procedure,

despite the fact that the RDCs were necessary to determine the

amplitudes of motion in the Backrub ensembles. We additionally

find that the sequence diversity tolerated by non-RDC-optimized

Backrub ensembles is similar to that of both the ubiquitin X-ray

ensemble and the UBQ subfamily X-ray ensemble. This result

needs to be tested on more proteins and, if validated, should be

useful in making prospective predictions to numerous applications,

such as protein-protein or protein-small-molecule docking, protein

interface design, and enzyme design.

Methods

Residual dipolar coupling measurements
The dataset of RDCs we use here consist of measurements in 23

alignment media as described in Lakomek et al. [35].

Structure processing
For all X-ray structures, explicit hydrogen atoms were added

according to standard geometry using Rosetta, and the positions of

hydrogens with rotatable bonds were optimized [74]. The 46-

member ubiquitin X-ray ensemble used was the same as that of

[4].

Generation of conformational ensembles
To generate protein conformational ensembles, we ran ‘‘Back-

rub’’ Monte Carlo simulations, as described in [30] and [31].

Briefly, this method randomly makes one of three types of moves:

(a) a rotamer change (50% of the time), (B) a local backbone

conformational changes (Backrub move) consisting of a rigid body

rotation of a random peptide segment about the axis connecting

the endpoint C-alpha atoms (25% of the time), or (c) a composite

move with a Backrub change and one or two rotamer changes

(25% of the time). After each move, the positions of the C-beta and

H-alpha atoms are modified to minimize bond angle strain as

described [31]. This results in bond angle changes of the main

chain atoms of one to four standard deviations. The mean values

and standard deviations are very similar to those computed in a set

of 240 high-resolution crystal structures (better than 1.3 Å) with

less than 25% sequence identity culled from the Dunbrack

database [75], except for some perturbation to the N-CA-C angle

(mean and standard deviations are 111.5u and 4.1u in the Backrub

ensembles and 111.0u and 2.5u in the crystal structure set). See

Figure S2 for details on the structural quality analysis for all

structures and ensembles used in this study.

We ran a Backrub Monte Carlo simulation at kT = 0.1 from the

starting PDB conformation (using 1UBQ, which has the highest

resolution (1.8 Å) of the unbound ubiquitin structures; similar

results were obtained for maximum segment length of 3 with PDB

entries 1UBI and 1CMX and worse Q factors were obtained for
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PDB entries 1FXT, 1AAR, 1F9J, and 1TBE) for 10,000 steps with

a maximum segment length of 3 or 12, matching the segment

length used later. The lowest energy structure from this simulation

is used as the starting conformation for 10,000 randomly seeded

Backrub simulations at one of 5 different temperatures (kT = 0.3,

0.6, 1.2, 2.4, or 4.8) run for an additional 10,000 steps. The last

structure from each of these simulations is used to form the starting

set of 10,000 structures.

From this initial set of 10,000 structures, ensembles are selected

to match the RDCs by minimizing the Q-factor of the ensemble.

First, structures are randomly chosen to create a starting ensemble

of a given size (2, 3, 5, 10, 20, 50 or 100 structures), and the Q-

factor of the ensemble is calculated (see below). Next, a random

structure in this ensemble is chosen and replaced with a randomly

chosen structure from the initial ensemble of 10,000 structures;

then the new Q-factor of the ensemble is calculated. If the new Q-

factor is lower than before the replacement, the change is kept,

otherwise it is reverted. These structure replacements are repeated

until the Q-factor changes by less than 0.001 in 5000 steps. By

repeating this method 1000 times, 1000 RDC-optimized Backrub

ensembles are created. There are a very large number of possible

subsets of a given size. For example, there are 4*10‘61 different

sub-ensembles of size 20 from the initial ensemble of size 10,000,

too many to be evaluated. The approach described here does not

guarantee that the ensemble with the lowest Q-factor will be

found, but it starts from many random starting points to broadly

sample the space of possible sub-ensembles and the selection

process converges to a low Q-factor solution within 10,000

Backrub-generated structures for all Backrub Monte Carlo

temperatures (except kT = 4.8; see Figure S8).

Calculating RDCs from a structure or structural ensemble
RDCs are calculated from a single structure and an ensemble of

structures as described in [76]. Briefly, we first find the alignment

tensor from a structure (or set of structures) and the experimental

couplings. This is done using the equation T = A21 Dexp, where T

is the alignment tensor, A21 is the Moore-Penrose inverted matrix

of projection angles for the amide bonds (or averaged projection

angles for a set of structures), and Dexp is the vector of

experimental couplings. The predicted couplings are then

calculated with the equation Dcalc = AT where A is the same

matrix of projection angles from above and Dcalc is the vector of

calculated couplings.

Q-factors were calculated for all RDC measurements with the

equation:

Q~
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Errors between experimental and predicted RDCs were

calculated with:

Derror~
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Loop residues (i.e. those with DSSP [77] secondary structure

type not H, E, G or I) are excluded from the analysis in both

tensor determination and back-computation of RDCs and Q-

values. The non-loop residues used in all analyses in this paper are

ubiquitin residues 2–7, 12–16, 23–34, 38–45, 48–49, 57–59, and

66–71.

Sources of error
There are several sources of error in our analysis to consider

when assessing the significance of the results. First, there is error in

the RDC measurements due to experimental uncertainty. The

uncertainty in these values is estimated to be 0.3 Hz [35]. To

calculate the resulting uncertainty in the Q-factor, we added

Gaussian-distributed noise of mean amplitude 0.3 Hz to the RDC

measurements (see section below) in 1000 Monte Carlo trials. This

resulted in a value of Qexperimental_error = 0.036.

A second source of error results from not finding the ensemble

with the lowest possible Q-factor from a given initial structure set.

We estimated this error by repeating the selection procedure many

times and evaluating the variance in the resulting Q-factors. We

take explicit steps to minimize this error by enforcing two

convergence criteria on the optimization: 1) ensemble selection is

not finished until 5000 steps have passed without a change in Q of

more than 0.001, and 2) enough RDC-optimized ensembles are

generated from random starting structures such that the difference

in the Q-factors of the best and 10th best RDC-optimized

ensemble is not more than 0.005. Thus, this Qoptimization_error is on

the order of 0.005.

A third important source of error is due to insufficient sampling

of conformational space with the Backrub Monte Carlo protocol

and the 10,000 structures that we use to select ensembles from. We

estimated this Qsampling_error by running the structure generation

protocol at each temperature 10 times, thus creating 10 sets of

10,000 Backrub-generated structures at each temperature. The

standard deviations of the minimum Q-factors over these 10 sets of

10,000 structures are 0.0151, 0.0104, 0.0025, 0.0039, and 0.0049

for kT = 0.3, 0.6, 1.2, 2.4 and 4.8, respectively for a maximum

segment length of 12. The standard errors of the mean of these

values are 0.0048, 0.0033, 0.0008, 0.0012, and 0.0015, respec-

tively.

Calculation of the experimental uncertainty in the Q-
factor (Qexperimental_uncertainty)

Gaussian-distributed noise was added to the experimental

RDCs with 1000 Monte-Carlo samples. The RDC uncertainty

of each measurement was 0.3 Hz [35], which was used as the

standard deviation of the Gaussian noise function. The resulting

Qexperimental_uncertainty is 0.036 with a standard deviation of

0.00102 over the 1000 samples.

Order parameter calculation
Order parameters were calculated with the equation

S2~
3

2
Sx2T2zSy2T2zSz2T2z2SxyT2z2SxzT2z2SyzT2
� �

{
1

2

where x, y and z are the coordinates of the normalized unit vectors

representing the amide bond vector orientations [78]. For the

Backrub ensemble, these values were then scaled by 1/1.12 = 0.89

to account for librational effects that cannot be sampled by the

Backrub method when considering only one type of RDCs [79].

Molecular dynamics trajectory
We used the 100-nanosecond AMBER trajectory of ubiquitin in

TIP4Pw/e water from Wong and Case [63]. The protein was

allowed to equilibrate over the first 4.32 nanoseconds, and

snapshots were taken from the following 100 nanoseconds at
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10-picosecond intervals. This resulted in 10,000 structures, which

were used to calculate an overall Q-factor for the trajectory. In

addition, we applied the selection scheme in Figure 2C on these

10,000 snapshot structures to select ensembles with optimized Q-

factors.

Measurement of sequence space sampling
To estimate the sequence space compatible with different

structures and ensembles, we used Rosetta computational protein

design to generate 1000 low-energy sequences for each single

structure or 20 sequences per ensemble member for ensembles of

size 50. To find a low-scoring sequence, each design simulation

consists of 20 rounds of Monte Carlo simulated annealing with the

number of steps in each round equal to the number of rotamers

created for the simulation. The backbone of each structure or

ensemble member is kept fixed during the design simulations and

all positions were allowed to vary to any of the 20 naturally

occurring amino acids, adding extra conformers at one standard

deviation around the mean rotamer for chi 1 and 2 dihedral

angles. The scoring function used was the Rosetta all-atom scoring

function [54], which is dominated by a Lennard-Jones potential, a

geometry-dependent hydrogen-bonding potential [74] and an

implicit solvation potential [80].

Distances between sequences were calculated as in [50]. Briefly,

these distances were calculated as the sum of the substitution costs

(using the BLOSUM62 matrix after normalizing it to range from 0

to 1) [71] for the positions that aligned in all sequences: residues 1–

9, 12–24, 26–35, 40–53, 55–63, 65–71. After calculating the

distances between all pairs of sequences within each ensemble and

between pairs of ensembles, we used metric multidimensional

scaling in R [81] to reduce the dimensionality of the space to the

two dimensions spanning the most sequence distance.

The procedure was repeated with the sequences of core residues

only, where core residues were defined by counting the number of

neighbor residues with C-beta atoms within 10 Å of the C-beta

atom of the residue of interest (or C-alpha atoms for glycine). The

cutoff value used (greater than or equal to 18) was chosen so that

approximately one third of the residues fell into the core category

(excluding the flexible C-terminus), resulting in 21 buried

positions: residues 3, 5, 17, 21, 23, 25, 26, 27, 30, 41, 43, 45,

50, 55, 56, 59, 61, 65, 67, 68, and 69.

C-alpha difference distance matrices
First, for each structure, we calculated the matrix of distances

between all C-alpha atoms. Then, for each pair of structures, we

calculated the distance difference matrix as the absolute value of

the difference of the distance matrices of the structures. These

distance difference matrices were averaged to give the C-alpha

difference distance matrix of the ensemble [45].

Gaussian Network Model
Theoretical B-factors were calculated by applying the online

Gaussian Network Model (oGNM) tool at http://ignm.ccbb.pitt.

edu/GNM_Online_Calculation.htm [69] to PDB structure 1UBQ

using 1 node per residue and a cutoff of 10 Å for amino acid pairs.

UBQ subfamily structural alignment
To create a structural ensemble for the UBQ subfamily we took

the highest resolution X-ray structure for each protein listed in

Table 1 of Kiel et al. [53] (or the first structure of an NMR

ensemble if no X-ray structure was available). We removed

structures that had 100% sequence identity to other structures in

the ensemble. We performed a multiple structural alignment using

MAMMOTH-mult [70] and removed PDB id 1WIA because it

was missing residues that aligned with part of the helix in the

native ubiquitin sequence; all other structures had residues that

aligned with all the residues in the secondary structure regions of

ubiquitin. The resulting ensemble consisted of 20 structures:

1XD3 chain B, 1BT0 chain A, 1EUV chain B, 1IYF, 1J8C, 1LM8

chain B, 1M94, 1NDD chain A, 1OQY, 1P1A, 1TGZ chain B,

1V5O, 1V5T, 1V86, 1WE6, 1WE7, 1WGD, 1WGG, 1WH3, and

1WM3 chain A. To create the C-alpha distance difference matrix

we used the 66 positions that aligned in all 20 structures, which

were (using 1UBQ numbering): 1–7, 9–16, 18–34, 36–46, 48–55,

57–64, 66–72.

Cross-Validation
We performed cross-validation by using the alignment tensor

calculated from the NH RDC datasets to calculate RDCs for four

datasets of NC9 RDC couplings and four datasets of HC9

couplings. These ‘‘free’’ data were not included in the selection

process and are reported as Rfree factors, as calculated by Lange et

al. [4].

Rfree~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i

niQ
2
i

,
2
XN

j

nj

 !vuut
for the N different types of experiments with ni measurements each

and Q-factor Qi. For RDC-optimized Backrub ensembles, the

Rfree values are averaged over the five lowest-Q factor ensembles.

Supporting Information

Text S1 Supplementary results & supplementary methods.

Found at: doi:10.1371/journal.pcbi.1000393.s001 (0.06 MB PDF)

Figure S1 RDCerror and Q-factors of different ensembles. (A)

Error in the calculated RDCs. (B) Same data as Figure 3C in the

main manuscript with the addition of bars showing the minimum

Q factors of RDC-optimized ensembles of size 50 (allowing

multiple instances of the same structure) from the given source

using the optimization approach outlined in Figure 2C of the main

manuscript.

Found at: doi:10.1371/journal.pcbi.1000393.s002 (0.58 MB EPS)

Figure S2 Stereochemistry of Backrub and other ensembles.

Found at: doi:10.1371/journal.pcbi.1000393.s003 (0.27 MB EPS)

Figure S3 C-alpha difference distance matrices. (A) C-alpha

difference distance matrices of various ensembles. (B) Mean C-

alpha difference distance values for various ensembles. Red dashed

lines: anchor residues 44, 58 and 68. (C) Normalized C-alpha

difference distance values and RDC errors over sequence for the

ubiquitin X-ray ensemble and the RDC-optimized Backrub

ensemble. (The C-alpha difference distance values were normal-

ized to the maximum and minimum values in the secondary

structure regions longer than 3 residues.)

Found at: doi:10.1371/journal.pcbi.1000393.s004 (4.29 MB TIF)

Figure S4 C-alpha RMSD and amide order parameter traces of

Backrub ensembles. C-alpha RMSD traces of the best five RDC-

optimized (grey) and one non-RDC-optimized (black) Backrub

ensembles for maximum segment length of 3 with (A) kT = 0.3, (B)

kT = 2.4, and (C) kT = 4.8 and maximum segment length of 12

with (D) kT = 0.3, (E) kT = 1.2, and (F) kT = 4.8. (G) Amide order

parameters for the RDC-optimized and non-RDC-optimized

Backrub ensembles, the SCRM description, the relaxation

experiments, and the EROS ensemble.
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Found at: doi:10.1371/journal.pcbi.1000393.s005 (1.42 MB EPS)

Figure S5 Chi angle distributions of various residues. For the

DER ensemble (1XQQ), RDC-optimized and non-RDC-opti-

mized Backrub ensembles with maximum segment length of 12

with kT = 1.2. Also included are the order parameters for the

RDC-optimized ensemble, the MD trajectory and the experimen-

tal relaxation measurements, where available.

Found at: doi:10.1371/journal.pcbi.1000393.s006 (0.54 MB EPS)

Figure S6 Sampling of sequence space by computational design

for both core only and aligned residues. Low-scoring designed

sequences on the fixed backbone of the X-ray structure 1UBQ

(orange); on non-RDC-optimized Backrub ensembles with max-

imum segment length of 12 with kT = 0.3 (green), kT = 1.2 (blue),

and kT = 4.8 (cyan); and sequences from the UBQ family (brown)

for (A) aligned and (B) only core residues; or low-scoring designed

sequences on the 100 ns MD ensemble (red) for (C) aligned and

(D) only core residues.

Found at: doi:10.1371/journal.pcbi.1000393.s007 (1.35 MB EPS)

Figure S7 Amide vector orientations. Angle difference between

the average amide vector orientation of the 1D3Z NMR ensemble

and the average amide vector orientations in RDC-optimized and

non-RDC-optimized Backrub ensembles (A) maximum segment

length of 12 with kT = 1.2 and (B) maximum segment length of 3

with kT = 2,4. The angle difference of the average amide vector

orientation of the 1D3Z ensemble is also compared to the

orientation of amide vectors in two X-ray structures (with

hydrogens added using Rosetta). (C) The difference in the angle

differences from (A) and (B) for non-RDC-optimized minus RDC-

optimized ensembles in secondary structure regions. (D) Angle

differences of the two (E) RDC-optimized and (F) non-RDC-

optimized Backrub ensembles plotted relative to each for residues

in secondary structure regions.

Found at: doi:10.1371/journal.pcbi.1000393.s008 (1.46 MB EPS)

Figure S8 Convergence of Q factors in the optimization

protocol.

Found at: doi:10.1371/journal.pcbi.1000393.s009 (0.17 MB EPS)

Table S1 Cross-validation analysis.

Found at: doi:10.1371/journal.pcbi.1000393.s010 (0.04 MB

DOC)

Table S2 Q-factors of RDC-optimized ensembles at various

simulation temperatures and maximum segment lengths.

Found at: doi:10.1371/journal.pcbi.1000393.s011 (0.03 MB

DOC)
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