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Abstract— In this case study, a ligand-based virtual high 

throughput screening suite, bcl::ChemInfo, was applied to 

screen for  activation of the protein target 17-beta 

hydroxysteroid dehydrogenase type 10 (HSD) involved in 

Alzheimer’s Disease. bcl::ChemInfo implements a diverse set 

of machine learning techniques such as  artificial neural 

networks (ANN), support vector machines (SVM) with the 

extension for regression, kappa nearest neighbor (KNN), and 

decision trees (DT).  Molecular structures were converted into 

a distinct collection of descriptor groups involving 2D- and 3D- 

autocorrelation, and radial distribution functions. A 

confirmatory high-throughput screening data set contained 

over 72,000 experimentally validated compounds, available 

through PubChem. Here, the systematical model development 

was achieved through optimization of feature sets and 

algorithmic parameters resulting in a theoretical enrichment of 

11 (44% of maximal enrichment), and an area under the ROC 

curve (AUC) of 0.75 for the best performing machine learning 

technique on an independent data set. In addition, consensus 

combinations of all involved predictors were evaluated and 

achieved the best enrichment of 13 (50%), and AUC of 0.86. 

All models were computed in silico and represent a viable 

option in guiding the drug discovery process through virtual 

library screening and compound prioritization a priori to 

synthesis and biological testing. The best consensus predictor 

will be made accessible for the academic community at 

www.meilerlab.org  
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Alzheimer’s Disease puts a financial burden on society 
with over $150 billion annually, making it the 3rd most 
costly disease after heart disease and cancer [1]. In modern 
drug design, compounds with undesirable biological activity 
can be eliminated from the available chemical space while 
optimizing efficacy. The ability to predict active compounds 
related to cognitive disorders such as Alzheimer’s Disease 
has the potential to reduce the medical cost involved.  

The protein target 17-beta hydroxysteroid dehydrogenase 

type 10 (HSD) has been found in elevated concentrations in 
the hippocampi of Alzheimer’s disease patients. HSD may 
play a role in the degradation of neuroprotective agents. The 
inhibition of HSD has been indicated as a possible mean’s of 
treating Alzheimer's disease. Dysfunctions in human 17 beta-
hydroxysteroid dehydrogenases result in disorders of biology 
of reproduction and neuronal diseases, the enzymes are also 
involved in the pathogenesis of various cancers. HSD has a 
high affinity for amyloid proteins. Thus, it has been proposed 
that HSD may contribute to the amyloid plaques found in 
Alzheimer's patients [2]. Furthermore, HSD degrades 
neuroprotective agents like allopregnanolone which may lead 
to memory loss. Therefore, it has been postulated that 
inhibition of HSD may help lessen the symptoms associated 
with Alzheimer's.  

High-throughput screening (HTS) has become a key 
technology of pharmaceutical research [3], often more than 
one million compounds per biological target are screened [2]. 
At the same time, the number of compounds testable in a 
HTS experiment remains limited and costs increase linearly 
with size of the screen [4]. This challenge motivates the 
development of virtual screening methods which search large 
compound libraries in silico and identify novel chemical 
entities with a desired biological activity [2]. 

Machine learning techniques play a crucial role in 
modeling quantitative structure activity relationships 
(QSAR) by correlating chemical structure with its biological 
activity for a specific biological target [3, 5-7]. In recent 
years the potential of approaches such as Support Vector 
Machines (SVM) and Artificial Neural Networks (ANN) for 
establishing highly non-linear relations has become apparent. 
[18-22]. The algorithms learn to recognize complex patterns 
and make intelligent decisions based on an established 
compound library. Imposing such acquired sets of patterns 
obtained by a learning process, the algorithms are able to 
recognize not yet tested molecules and categorize them 
towards a given outcome. 

In this study, a cheminformatics software suite named 
bcl::ChemInfo, incorporates several predictive models using 
supervised machine learning techniques including artificial 
neural networks [8], support vector machines with the 
extension for regression estimation (SVR) [9],  decision trees 
[10], and unsupervised techniques such as kappa nearest 
neighbors (KNN) [11],  and kohonen networks (Kohonen) 
[12]. 
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I. MACHINE LEARNING TECHNIQUES 

A. Unsupervised Learning 

The kohonen network represents an unsupervised 
learning algorithm [12-14]. It is conceptually derived from 
artificial neural networks consisting of an input layer and a 
two-dimensional grid of neurons, the kohonen network. 

The second unsupervised learning method is the Kappa – 
Nearest Neighbors [15-17]. This method uses a distance 
function to calculate pair-wise distances between query 
points and reference points, where query points are those to 
be classified. 

B. Supervised Learning  

Artificial Neural Networks are successful attempting 
classification and regression problems in chemistry and 
biology. The structure of ANNs resembles the neuron 
structure of a human neural net.  Layers of neurons are 
connected by weighted edges wji. The input data xi are 
summed according to their weights, activation function 
applied, and output used as the input to neurons of the next 
layer (Figure 2).  

Support Vector Machine learning with extension for 
regression estimation [18, 19] represents a supervised 
machine learning approach successfully applied in the past 
[3, 7]. The core principles lay in  linear functions defined in 
high-dimensional hyperspace [20], risk minimization 
according to Vapnik’s   - intensive loss function, and 
structural risk minimization [21] of  a risk function 
consisting of the empirical error and the regularized term. 

The Decision Tree learning algorithm [10, 22] determines 
sets of rules to partition a given training data set. The 
outcome is a tree diagram or dendrogram (Figure 2) that 
describes how a given dataset can be classified by assessing 
a number of predictor variables and a dependent variable. 

 

II. TRAINING DATA 

The protein target 17-beta hydroxysteroid dehydrogenase 

type 10 (HSD) is part of the family of eleven 17-β 

hydroxysteroid dehydrogenases that oxidize or reduce 

steroids at the 17 position [23]. Thus, the biological activity 

of these steroids is modulated. HSD catalyzes the oxidation 

of the positive allosteric modulators of GABA, 

allopregnanolone and allotetrahydrodeoxycorticosterone (3, 

5 -THDOC), to 5α-DHP, 5α-DHDOC, respectively [21]. It 

also inactivates 17β-estradiol [24]. When first identified, 

HSD was known as endoplasmic reticulum-associated 

amyloid binding protein (ERAB) [2].  HSD has since been 

identified as being the only member of the 17β-HSD family 

to be found in mitochondria [24]. HSD has been found in 

increased concentrations in the mitochondria of the 

hippocampi of Alzheimer's disease mice [24] and humans 

[25]. Several possible relationships between HSD and 

Alzheimer’s disease have been proposed in the literature 

[23]. HSD has a high affinity for amyloid proteins. 

Therefore, it has been suggested that HSD may contribute to 

the amyloid plaques found in Alzheimer's patients [2]. 17β-

estradiol is a neuroprotective agent which prevents the 

degradation of existing neurons via its regulation of the β-

amyloid precursor protein metabolism [24]. HSD has been 

 
 

Figure 2: Depictions of Decision Trees (A) , Artificial  Neural 

Networks (B) , and Support Vector Machines (C) are 

presented. In A), the partitioning algorithm determines each 

predictor forecast, the value of the dependent variable. The 

dataset is then successively split into subsets (nodes) by the 

descriptor that produces the greater purity in the resulting 

subsets.  In B), a three-layer feed forward network is shown 

using a sigmoid activation function in each neuron. In C), the 

prediction process of a support vector machine is shown for an 

unknown vector.  

 
 

  

 

 

 

 
Figure 1: The schematic view of three unsupervised machine 

learning techniques is presented. A) A Kohonen network is 

represented by a input layer connected to a grid of nodes, each 

fully connected with its neighbors.  B) The kappa – nearest- 

neighbors represents the predicted value of a query point as the 

weighted average of its kappa nearest reference points.  

 



shown to degrade 17β-estradiol which may lead to neuronal 

degradation and the accumulation of β-amyloid, forming 

characteristic plaques [21]. It was also suggested that 

allopregnanolone reverses memory loss and dementia in the 

mouse model of Alzheimer's disease [26]. HSD is involved 

in the degradation of allopregnanolone which may lead to 

memory loss. Therefore, it has been postulated that 

inhibition of HSD may help lessen the symptoms associated 

with Alzheimer's. 

The data set for the protein target HSD used in this study 

was obtained through PubChem [27] (AID 886) and resulted 

in a final data set of 72,066 molecules. A confirmatory high 

throughput screen revealed 2,463 molecules which activate 

the enzyme, as experimentally determined by dose-response 

curves. Among the actives, 495 compounds with a 

concentration <= 1 µM were identified.  All molecules in 

the data set were numerically encoded using a series of 

transformation-invariant descriptors which serve as unique 

fingerprints. The descriptors (Table I) were calculated using 

in-house code.  

 

III. IMPLEMENTATION / METHOD 

Our in-house developed C++ class library, the 
BioChemistryLibrary (BCL), was employed to implement all 
machine learning algorithms, and descriptor calculations 
used for this study. A third-party 3D conformation generator, 
CORINA [28], was used to calculate 3D coordinates for 
molecules prior to descriptor calculation. The here applied 
ligand-based virtual high throughput screening suite, 
bcl::ChemInfo, is part of the BCL library. 

 

A. Dataset Generation 

During the training of the models, 10% of the data set 
was used for monitoring and 10% were used for independent 
testing of the trained models, leaving 80% for the training 
data set. The independent data set is put aside and not used 
during the training process. Each trained model is evaluated 
by a given quality measure based on this independent data 
set.   

 

B. Quality Measures 

The machine learning approaches are evaluated by 

means of a receiver operating characteristic (ROC) curve 

using cross-validated models. ROC curves plot the rate of  

true positives         ⁄    (     )⁄ , or  

sensitivity versus the rate of false positives         ⁄  
     ⁄    (     )⁄ , or (1 - specificity). The 

diagonal represents performance of a random predictor and 

has an integral or area under the curve (   ) of 0.5. The 

QSAR model progressively improves as the    -value 

increases. Often           is normalized with the 

background fraction of active compounds through 

computation of the enrichment measure:  
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 The value represents the factor by which the fraction of 
active compounds can be theoretically increased above the 
fraction observed in the original screen through in silico 
ranking. Another introduced measure is the root mean square 
deviation (    ). 
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C. Feature Selection 

A total of 60 descriptor groups resulting in 1,284 
descriptor values were generated using the BCL. These 60 
categories consisted of scalar descriptors, as well as 2D- and 
3D autocorrelation functions, radial distribution functions, 
and van der Waals surface area weighted variations of each 
of the non-scalar descriptors (see Table I). 

Sequential forward feature selection [29] was used for 
feature optimization for each machine learning technique 
individually.  It describes a deterministic greedy search 
algorithm among all features. First, every single feature is 
selected and five-fold cross-validated models are trained 
followed by the evaluation of respective objective functions. 
The top performing feature is elected as the starting subset 
for the next round. Next, each remaining feature is added to 
the current subset in an iterative fashion resulting in N-1 
feature sets. The best performing feature set is chosen again 
as the starting set for the next round. This process is repeated 
until all features are selected and the best descriptor 
combination is determined.  

Additionally, each feature set was trained with 5-fold 
cross-validation evaluated on an independent data set. The 
number of models generated during this process for each 

training method was  ∑  (   )  
   . Upon identification of 

the optimized feature set for each algorithm, any algorithm-
specific parameters were optimized using the entire training 
data set and using 5-fold cross-validation. 

Every cross-validation model was evaluated by its quality 
measure on the independent data set. 

 

IV. RESULTS 

Various machine learning methods were evaluated as 
single predictors, highlighted in Table II. Given the 
independent data set, a perfect predictor would achieve a 
theoretical enrichment of 27.  

 



ANNs were trained applying simple propagation as a weight 

update algorithm each iteration. The      was evaluated as 

the objective function every step during the feature 

optimization process. ANNs as a single predictor achieved a 

theoretical enrichment of 10 (37% of possible maximal 

enrichment) on an independent dataset. An integral under 

the ROC curve of 0.83 was obtained. 
SVMs were trained using an initial cost parameter C of 

1.0 and the kernel parameter γ of 0.5 during the feature 
optimization process. Upon identification of the optimal 
feature set, the cost and γ parameters were optimized to 2 
and 32, respectively. As a single predictor, SVMs achieved a 
theoretical enrichment of  ~12 (44%) and an AUC of 0.75 on 
an independent dataset. 

The KNN algorithm was used to predict the biological 
activity values of the training, monitoring, and independent 
data sets. The value of kappa, the number of neighbors to 
consider, was optimized with the full data set using the 
optimized feature set determined during the feature selection 
process. KNNs, as a single predictor, achieved a theoretical 
enrichment of ~11 (41%), AUC of 0.77 using an optimal 
kappa of 4. 

The Kohonen networks were trained with a network grid 
dimension of 10 x 10 nodes and a neighbor radius of 4 using 
the Gaussian neighbor kernel. The best result achieved by 
Kohonen networks was a theoretical enrichment of ~7 (28%) 
and an area under the ROC curve of 0.74.  

The assessed Decision Trees were cross-validated and 
evaluated resulting in a theoretical enrichment of ~5 (18%) 
and an AUC of 0.70.  

To further evaluate the predictive models, ensemble 
predictors were also created by averaging the predictions 
using all possible combinations of models. The best 
consensus resulted in a      of 0.86 and a theoretical 
enrichment of 13 (50%) achieved by the ensemble predictor 
model ANN/Kohonen/KNN/SVM (Table II) (Figure 3).  

Additionally, Table II lists all possible combinations 
introducing consensus predictors. All entries in Table II are 
sorted by Enrichment in descending order.  

V. DISCUSSION 

Among single predictors, SVM, KNN, and  ANN achieved a 

comparable enrichment performance (37% to 44%). 

Kohonen networks (28%) and DTs (18%) underperformed 

TABLE II 
 SINGLE AND CONSENSUS PREDICTOR RESULTS 

 

Method      
Enrichment 

(% max) 
AUC 

ANN/ Kohonen / KNN / SVM 0.91 13.42 (50) 0.86 

ANN/DT/Kohonen/KNN/SVM 1.17 13.42 (50) 0.86 

ANN / KNN / SVM 0.76 13.27 (49) 0.86 

ANN / DT / KNN / SVM 1.09 13.27 (49) 0.86 

ANN / DT / SVM 1.37 12.87 (48) 0.85 

ANN / SVM 0.95 12.86 (48) 0.85 

Kohonen / KNN / SVM 0.85 12.81 (47) 0.81 

DT / Kohonen / KNN / SVM 1.20 12.81 (47) 0.81 

ANN / Kohonen / KNN 0.98 12.74 (47) 0.85 

ANN / DT / Kohonen / KNN 1.30 12.74 (47) 0.85 

ANN / KNN 0.81 12.55 (47) 0.85 

ANN / DT / KNN 1.23 12.55 (47) 0.85 

DT / KNN / SVM 1.11 12.52 (46) 0.77 

KNN / SVM 0.68 12.44 (46) 0.77 

ANN / Kohonen / SVM 1.10 12.35 (46) 0.85 

ANN / DT / Kohonen / SVM 1.40 12.35 (46) 0.85 

DT / SVM 1.54 12.01 (44) 0.75 

SVM 0.84 11.80 (44) 0.75 

Kohonen / KNN 0.93 11.78 (44) 0.78 

DT / Kohonen / KNN 1.38 11.78 (44) 0.78 

Kohonen / SVM 1.10 11.54 (43) 0.80 

DT / Kohonen / SVM 1.52 11.52 (43) 0.80 

DT / KNN 1.33 11.10 (41) 0.77 

KNN 0.71 11.08 (41) 0.77 

ANN / DT 1.74 10.13 (38) 0.83 

ANN 1.25 10.11 (37) 0.83 

ANN / Kohonen 1.33 10.03 (37) 0.83 

ANN / DT / Kohonen 1.66 10.03 (37) 0.83 

Kohonen 1.55 7.43 (28) 0.74 

DT / Kohonen 1.97 7.42 (27) 0.74 

DT 2.46 4.80 (18) 0.70 

 

TABLE I 
THE MOLECULAR DESCRIPTORS BY NAME AND DESCRIPTION 

 

 Descriptor 

Name 

Description 

Scalar descriptors Weight Molecular weight of compound 
 H-Bond 

donors 

Number of hydrogen bonding 

acceptors derived from the sum of 

nitrogen and oxygen atoms in the 
molecule 

 H-Bond 

acceptors 

Number of hydrogen bonding 

donors derived from the sum of N-
H and O-H groups in the molecule 

 TPSA Topological polar surface area in 
[Å2] of the molecule derived from 

polar 2D fragments 

Vector descriptors Identity  weighted by atom identities 
2D Autocorrelation   

(11 descriptors) 

Sigma 

Charge 

weighted by σ atom charges 

 Pi Charge weighted by π atom charges 
3D Autocorrelation   

(12 descriptors) 

Total 

Charge 

weighted by sum of σ and π 

charges 

 Sigma 
Electro-

negativity 

weighted by σ atom 
electronegativities 

Radial Distribution 
Function 

Pi Electro-
negativity 

weighted by π atom 
electronegativities 

(48 descriptors) Lone Pair  

Electro-
negativity 

weighted by lone pair 

electronegativities 

 Polarizibility weighted by effective atom 

polarizabilities 

 



in comparison. In contrast, consensus models clearly 

outperform single technique predictive models. The 

majority of ensemble models rank above the average (Table 

II). Among the best ensemble predictors, ANNs, SVMs, and 

KNN in combination yield the best enrichment result (50%). 

Adding each one of the mentioned techniques to an 

ensemble increased the predictive accuracy, respectively. 

This implies that each single technique supplies a distinct 

contribution to the predictive accuracy of the final model 

(ANN/Kohonen/KNN/SVM). The inclusion of decision trees 

into the final ensemble did not change the overall 

performance (see ANN/DT/Kohonen/KNN/SVM). Both 

predictors achieved the same enrichment (50%).     , as a 

quality measure, discriminates distinguished predictive 

models by precision rather than accuracy of the predictions. 

Sorting Table II by      indicates that KNNs contribute 

among all top ranking predictors.  

VI. CONCLUSIONS 

In this research, we present a case study application of 
the ligand-based virtual high throughput screening suite, 
bcl::ChemInfo, on the target protein 17-beta hydroxysteroid 
dehydrogenase type 10 (HSD). HSD is involved in 
Alzheimer’s Disease which puts a tremendous financial 
burden on today’s society. QSARs models were developed to 
identify biologically active compounds for the activation of 
HSD. We have shown that the best consensus predictor 
achieved 50% of the maximal enrichment on an independent 
dataset. The best consensus predictor will be made accessible 
for the academic community at www.meilerlab.org. 
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0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

T
ru

e 
P

o
si

ti
v

e 
R

a
te

 

False Positive Rate 

ROC Curve 

0.0

0.2

0.4

0.6

0.8

1.0

0.001 0.01 0.1 1

http://www.meilerlab.org/


[18] L. M. Berezhkovskiy, "Determination of volume of distribution 

at steady state with complete consideration of the kinetics of 
protein and tissue binding in linear pharmacokinetics," Journal 

of pharmaceutical sciences, vol. 93, pp. 364-74, Feb 2004. 

[19] J. C. Kalvass, D. A. Tess, C. Giragossian, M. C. Linhares, and 
T. S. Maurer, "Influence of microsomal concentration on 

apparent intrinsic clearance: implications for scaling in vitro 

data," Drug metabolism and disposition: the biological fate of 
chemicals, vol. 29, pp. 1332-6, Oct 2001. 

[20] B. Schoelkopf and A. J. Smola, Learning with Kernels. 

Cambridge, Massachusetts: The MIT Press, 2002. 
[21] X. Y. He, J. Wegiel, Y. Z. Yang, R. Pullarkat, H. Schulz, and S. 

Y. Yang, "Type 10 17beta-hydroxysteroid dehydrogenase 

catalyzing the oxidation of steroid modulators of gamma-
aminobutyric acid type A receptors," Mol Cell Endocrinol, vol. 

229, pp. 111-7, Jan 14 2005. 

[22] M. R. H. M. Maruf Hossain, James Bailey, "ROC-tree: A Novel 
Decision Tree Induction Algorithm Based on Receiver 

Operating Characteristics to Classify Gene Expression Data," 

2006. 
[23] J. Adamski and F. J. Jakob, "A guide to 17beta-hydroxysteroid 

dehydrogenases," Mol Cell Endocrinol, vol. 171, pp. 1-4, Jan 22 

2001. 
[24] X. Y. He, G. Y. Wen, G. Merz, D. Lin, Y. Z. Yang, P. Mehta, 

H. Schulz, and S. Y. Yang, "Abundant type 10 17 beta-

hydroxysteroid dehydrogenase in the hippocampus of mouse 
Alzheimer's disease model," Brain Res Mol Brain Res, vol. 99, 

pp. 46-53, Feb 28 2002. 
[25] P. Hovorkova, Z. Kristofikova, A. Horinek, D. Ripova, E. 

Majer, P. Zach, P. Sellinger, and J. Ricny, "Lateralization of 

17beta-hydroxysteroid dehydrogenase type 10 in hippocampi of 
demented and psychotic people," Dement Geriatr Cogn Disord, 

vol. 26, pp. 193-8, 2008. 

[26] J. M. Wang, C. Singh, L. Liu, R. W. Irwin, S. Chen, E. J. 
Chung, R. F. Thompson, and R. D. Brinton, "Allopregnanolone 

reverses neurogenic and cognitive deficits in mouse model of 

Alzheimer's disease," Proc Natl Acad Sci U S A, vol. 107, pp. 
6498-503, Apr 6. 

[27] "PubChem http://pubchem.ncbi.nlm.nih.gov," ed. 

[28] J. Gasteiger, C. Rudolph, and J. Sadowski, "Automatic 

Generation of 3D-Atomic Coordinates for Organic Molecules," 

Tetrahedron Comput. Method., vol. 3, pp. 537-547, 1992. 

[29] K. Z. Mao, "Orthogonal forward selection and backward 
elimination algorithms for feature subset selection," IEEE Trans 

Syst Man Cybern B Cybern, vol. 34, pp. 629-34, Feb 2004. 

 
 

http://pubchem.ncbi.nlm.nih.gov,/

