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Abstract

Computational de novo protein structure prediction is limited to small proteins of simple topology. The present work
explores an approach to extend beyond the current limitations through assembling protein topologies from idealized a-
helices and b-strands. The algorithm performs a Monte Carlo Metropolis simulated annealing folding simulation. It
optimizes a knowledge-based potential that analyzes radius of gyration, b-strand pairing, secondary structure element (SSE)
packing, amino acid pair distance, amino acid environment, contact order, secondary structure prediction agreement and
loop closure. Discontinuation of the protein chain favors sampling of non-local contacts and thereby creation of complex
protein topologies. The folding simulation is accelerated through exclusion of flexible loop regions further reducing the size
of the conformational search space. The algorithm is benchmarked on 66 proteins with lengths between 83 and 293 amino
acids. For 61 out of these proteins, the best SSE-only models obtained have an RMSD100 below 8.0 Å and recover more
than 20% of the native contacts. The algorithm assembles protein topologies with up to 215 residues and a relative contact
order of 0.46. The method is tailored to be used in conjunction with low-resolution or sparse experimental data sets which
often provide restraints for regions of defined secondary structure.
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Introduction

Understanding of protein function and mechanics is facilitated

by and often depends on the availability of structural information.

The Protein Data Bank (PDB), as of April 2011, holds 66,726

protein structure entries, 87% determined by X-Ray crystallogra-

phy and 12% determined by Nuclear Magnetic Resonance (NMR)

spectroscopy, and the remaining 1% determined by Electron

microscopy and hybrid methods [1,2]. The millions of protein

sequences revealed by genome projects necessitate utilization of

computational methods for construction of protein structural

models. Comparative modeling utilizes structural information

from one or more template proteins with high sequence similarity

to the protein of interest to construct a model. As the PDB grows

and the number of proteins with an existing suitable template of

known structure increases, this method is unarguably most

important [3].

However, despite impressive advancements in the combination

of experimental protein structure determination techniques [4,5]

with comparative modeling [6], entire classes of proteins remain

underrepresented in the PDB as they evade crystallization or are

unsuitable for NMR studies; e.g. membrane proteins [7] and

proteins that only fold as part of a large macromolecular assembly

[8,9]. Such proteins more frequently adopt topologies not yet

represented in the PDB such that the current structural knowledge

fails to encapsulate necessary information to represent all protein

families and folds expected to be found in nature [10]. In such

situations de novo methods for prediction of protein structure from

the primary sequence alone can be applied.

De Novo Protein Fold Determination is Possible for
Smaller Proteins of Simple Topology

De novo protein structure prediction typically starts with

predicting secondary structure [11,12,13,14] and other properties

of a given sequence such as b-hairpins [15], disorder [16,17], non-

local contacts [18], domain boundaries [19,20,21], and domain

interactions [22,23]. System-learning approaches such as artificial

neural networks (ANN), hidden Markov models (HMM), and

support vector machines (SVM) are most commonly used in this

field [24,25].

This preparatory step is followed by the actual folding

simulation. Rosetta, one of the best performing de novo methods,

follows a fragment assembly approach [26,27,28]. For all

overlapping nine- and three- amino acid peptides of the sequence

of interest, conformations are selected from the PDB by agreement

in sequence and predicted secondary structure. Rosetta is capable

of correctly folding about 50% of all sequences with less than 150

amino acids [29].

Chunk-Tasser is another fragment assembly method for de

novo structure prediction that was one of the best performing

methods in the CASP8 experiment [30]. This method generates

chunks, three consecutive secondary structure elements (SSEs)

connected by two loops, using nine- and three- residue fragments.
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The final models are built by using these chunks as the starting

point coupled with a minimization process that also utilizes

threading and distance restraint predictions [31].

For Small Proteins with Less than 80 Amino Acids Models
can Sometimes be Refined to Atomic-detail Accuracy

During the folding simulation, most de novo methods use a

reduced protein representation that excludes side chain degrees of

freedom to simplify the conformational search space and potential.

The fastest and most accurate algorithms to add side chains in

order to build atomic detail models rely on sampling likely

conformations of amino acid side chains, so-called rotamers

[32,33,34]. At this stage, the backbone of flexible loop regions can

be further refined, in Rosetta by a combination of fragment

insertions, side chain repacking, and gradient minimization. In the

CASP6 experiment, Rosetta was able predict de novo the structure

of a small a-helical protein to a resolution of 1.59Å [26]. Following

this success, Bradley and co-workers showed comprehensively that

high resolution backbone structure prediction facilitates the

correct placement of side chains and thus de novo high resolution

structure elucidation for small proteins [35]. Note that the

refinement of backbone conformations and construction of side

chain coordinates aligns with most comparative modeling

protocols [36,37] (Figure 1). These algorithms model gaps and

insertions using loop closure algorithms that use analytical

geometry [38], molecular mechanics [39], or loop libraries from

the PDB [40] before entering the refinement process. Thereby

both approaches – de novo structure prediction and comparative

modeling – share the decoupling of the construction of backbone

and side chain coordinates. This procedure relies on the

hypothesis that accurately placed backbone coordinates define

the side chain conformations [33] (Figure 1).

Progress is Stalled by Inefficient Sampling of Large and
Complex Topologies

De novo methods perform well only for small proteins, because

the conformational search space increases rapidly as the protein

gets larger. Despite simplified representation of proteins that omit

side chain degrees of freedom, sampling the correct topology

remains the major bottleneck for folding large proteins. Sampling

is complicated for large proteins not only by size, but also by a

larger number of non-local contacts, i.e. interactions between

amino acids that are far apart in sequence. More of these

interactions contribute to protein stability and are therefore

important to sample in order to find the correct topology. At the

same time, when folding a continuous protein chain each of these

contacts complicates the search as conformational changes

between the two amino acids in contact require coordinated

adjustment of multiple phi, psi angles to not disrupt the contact.

To quantify the number of such non-local contacts the relative

contact order (RCO) of a protein was defined which is the average

sequence separation of residues ‘‘in contact’’, i.e. having their Cb

atoms (H2a for Glycine) within 8Å [41,42] normalized by sequence

length. As the RCO increases above 0.25 (i.e. the average

separation of two residues that are in contact is 25% of the

sequence length), the success rate of de novo prediction drops

drastically [43]. Also, the geometry of non-local interactions and

b-strand pairings in particular is often inaccurate as relative

placement of the SSEs cannot be optimized independently from

the connecting amino acid chain. This limitation must be

overcome for de novo methods to be successfully applied to larger

proteins. Interestingly, contact order correlates also with protein

folding rates [44] suggesting that the sampling of non-local

contacts is the rate-limiting step in protein folding.

De novo Protein Structure Prediction Optimally
Leverages Limited Experimental Datasets for Proteins of
Unknown Topology

Experimental structural data that becomes available for proteins

of unknown topology are often limited, i.e. sparse or low in

resolution. Typically, these limited data sets focus on and are more

readily available for backbone atoms in ordered secondary

structure elements. For example, cryo-Electron Microscopy and

X-Ray crystallography yield medium resolution density maps of 5–

Figure 1. Comparison of comparative modeling, BCL::Fold and Rosetta. In comparative modeling the protein backbone is constructed
partially from a target-template alignment, followed by loop construction and side chain building. On the other hand, de novo methods, such as
Rosetta, only take advantage of the decoupling of backbone placement and the side chain building. BCL::Fold also decouples the construction of
loops from assembly of secondary structure elements, similar to comparative modeling. Although disconnecting these steps makes computation
more feasible by splitting the total search space into manageable portions, they are not absolute and in order to address these issues SSE placement
has to be refined before loop building and side chain construction. While side chain conformations are not explicitly added to the model in the early
stages of de novo structure prediction, they are implicitly represented throughout the process through knowledge-based potentials.
doi:10.1371/journal.pone.0049240.g001
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10 Å where secondary structure can be identified but loop regions

and amino acid side chains remain invisible [45,46,47,48,49].

NMR and EPR spectroscopy yield sparse datasets due to

technological or resource limitations [49,50,51,52,53,54,55].

Chemical cross linking coupled with mass spectrometry has also

been shown to be applicable for protein structure determination at

these low resolutions [56,57,58].

While de novo protein structure prediction is typically insufficient

in accuracy and confidence to be applied to determine the

structure of a protein without the help of experimental data, a

series of manuscripts was published that demonstrated the power

of such technologies to predict protein structures accurately at

atomic-detail when combined with limited experimental data sets

of different origin. Qian et al. previously demonstrated use of de

novo structure prediction to overcome the crystallographic phase

problem [59]. De novo methods have also been applied for rapid

fold determination from unassigned NMR data [60] and structure

determination for larger proteins from NMR restraints [61]. In

addition, de novo structure prediction has also been coupled with

EPR restraints [62,63,64] as well as cryo-EM [49]. Kahlkof et. al

studied de novo structure prediction of laminin using distance

restraints from natural cross-links revealed a structural similarity to

galactose binding proteins [57], which was later confirmed when

the structure was experimentally determined by X-Ray crystal-

lography [65]. Numerous other studies have also harnessed the

power of de novo structure prediction with experimental restraints

[66,67,68].

The objective of the present work is to introduce an algorithm

for protein folding with a novel approach of assembly of SSEs in

three-dimensional space. This approach seeks to overcome size

and complexity limits of previous approaches by discontinuing the

amino acid chain in the folding simulation thereby facilitating the

sampling of non-local contacts. Exclusion of loop regions focuses

the sampling to the relative arrangement of rather rigid SSEs,

limiting the overall search space. The approach can be readily

combined with limited datasets which tend to restrain the location

of backbone atoms in SSEs. It leverages established protocols for

construction of loop regions and side chains to yield complete

protein models (Figure 1). The decoupling of the placement of

SSEs from the construction of loop regions relies on the hypothesis

that accurate placement of SSEs will allow for construction of loop

regions and subsequent placement of side chain coordinates, a

hypothesis tested excessively in comparative modeling. This

approach assumes further that the majority of the thermodynamic

stabilization achieved through formation of the core of the protein

is defined by interactions between SSEs and can therefore be

approximated with an energy function that relies exclusively on

scoring SSEs. This hypothesis has been tested in a companion

manuscript ‘‘BCL::Score’’ (BCL - BioChemicalLibrary) in the

same issue of this journal. Briefly, the scoring terms cover amino

acid environment and pair-wise interaction; clash penalties

prevent overlap; secondary structure is evaluated relative to the

predicted probabilities; chain breaks are tested for being closable

by a loop; the topology is evaluated by the radius of gyration, and

SSE pairing and packing is represented by distance and dihedral

angle. All potentials are derived using empirics from known

protein structures.

Although the algorithm is in principle applicable to membrane

protein structure prediction, changes in the sampling steps

presented in the BCL::Fold algorithm as well as modifications of

the energy terms in the composite energy functions of BCL::Score

are required and are presently under investigation.

Results and Discussion

In fragment assembly based approaches to de novo protein

structure prediction, local contacts are sampled more efficiently

than the non-local ones due to inherent restrictions imposed by the

connectivity of the amino acid sequence. This restriction leads to

one of the major challenge in de novo protein structure prediction –

the sampling of complex topologies as defined by the abundance of

non-local contacts and thus higher relative contact order (RCO)

values [43]. Further, fragment based approaches spend a large

fraction of time sampling the conformational space of flexible loop

regions that contribute little to the stability of the fold. Therefore

the accuracies of the methods deteriorate as the conformational

search space gets larger, typically for proteins with more than 150

residues. In particular, b-strand interactions are often sampled

insufficiently densely to arrive at the correct pairings with good

geometries. As a result, regular secondary structure cannot be

detected in the models giving them the well-known ‘‘spaghetti’’-

look. The score deteriorates hampering detection of the correct

topology in a large ensemble of models.

BCL::Fold is Designed to Overcome Size and Complexity
Limitations in De Novo Protein Structure Prediction

BCL::Fold assembles secondary structure elements (SSEs),

namely a-helices and b-strands while not explicitly modeling loop

conformations (Figure 2). Individual residues are represented by

their backbone and Cb atoms only, (Ha2 for Glycine). A pool of

predicted SSEs is collected using a consensus of secondary

structure prediction methods. A Monte Carlo Metropolis minimi-

zation with simulated annealing is used where models are altered

by SSE-based moves (Table S1 and Table S2) and evaluated by

knowledge-based energy potentials (Table S3). The reduced

representation of proteins in BCL::Fold decreases the conforma-

tional search space that has to be sampled. Moving discontinued

SSEs independently of each other accelerates sampling of non-

local contacts. The knowledge-based scoring function employed by

BCL::Fold is described in a companion manuscript in the same

issue of this journal.

BCL::Fold was evaluated using a benchmark set of proteins

collected using PISCES culling server. The set includes 66 proteins

of lengths ranging from 83 to 293 residues with,30% sequence

similarity. The set contains different topologies including 31 all a-

helical, 16 all b-strand, and 19 mixed ab folds (Table 1). The

selected proteins have RCOs in the range of 0.12 to 0.47 with an

average of 0.3060.07. It should be noted that as proteins get

larger, RCO values start decreasing (compare Figure S2).

Therefore we introduced a normalized contact order measure

NCO which is defined as the square of the contact order divided

by sequence length and is largely independent of protein size.

Consensus Prediction of SSEs from Sequence to Create
Comprehensive Pool for Assembly

The secondary structure prediction programs JUFO [13,69]

and PSIPRED [70] were used to create a comprehensive pool of

predicted SSEs. Two methods are used to avoid deterioration of

BCL::Fold performance if one of the methods fails. To further

avoid dependence on potentially incorrect predicted secondary

structure, we implement two strategies: a) the initial pool of SSEs

contains multiple copies of one SSE having different length. In

extreme cases of ambiguity this could be an a-helix predicted by

one method and a b-strand predicted by the other or one long a-

helix that overlaps with two short a-helices that span the same

region. b) The length of SSEs is dynamically adjusted during the

folding simulation in order to allow simultaneous optimization of

BCL:Fold - De Novo Protein Structure Prediction
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protein secondary and tertiary structure [13]. Both strategies

require a scoring metric that analyzes the agreement of a given set

of SSEs with the predicted secondary structure. Before the actual

folding simulation is started, a pool of likely SSEs is created using a

rapid Monte Carlo Metropolis simulation. The scoring scheme

and the pool generation are described in more detail in the

methods section. SSEs predicted by this method are only added to

the secondary structure pool if they satisfy the minimum length

restrictions; five residues for a-helices and three residues for b-

strands. Rationale for removal of very short SSEs is two-fold: a) the

reduced accuracy of secondary structure prediction techniques for

such short SSEs [71] and b) the limited contribution to fold

stability expected from short SSEs (compare companion manu-

script ‘‘BCL::Score – Knowledge based energy potentials for

ranking protein models represented by idealized secondary

structure elements’’).

Table 2 depicts Q3 accuracies (a measure of the accuracy for

predicting per residue secondary structure [72]), as well as the

percentage of native secondary structures correctly predicted and

the average shifts for the SSE pools of the 66 benchmark proteins

Figure 2. BCL::Fold protocol flowchart. (A) Generation of secondary structure element (SSE) pool. The secondary structure prediction methods,
PSIPRED and JUFO, have been combined to achieve a consensus three state secondary structure prediction. For a given amino acid sequence,
stretches of sequence with consecutive a-helix or b-strand predictions above a given probability threshold are identified as a-helical and b-strand
SSEs and added to the pool of SSEs to be used in the assembly protocol. (B) Assembly of SSEs. The initial model only has a randomly picked SSE from
the SSE pool. At each single iteration step, a move is picked randomly and applied to produce a new model. The details regarding utilized moves are
given in the next panel. (C) Energy evaluation using knowledge based potentials. After each change, the model is evaluated using knowledge based
potentials. These include loop, loop closure, amino acid environment, amino acid pair distance, amino acid clash, SSE packing, strand pairing, SSE
clash, contact order and radius of gyration. (D) Monte Carlo Metropolis minimization. Based on the energy evaluation, models with lower energies
than the previous model are accepted, while models with higher energy can be either accepted or rejected based on Metropolis criteria. The
accepted models are further optimized, in case of rejected models, the minimization continues with the last accepted model. The minimization is
terminated after either a specified total number of steps or a specified number of rejected steps in a row. The protocol consists of two such
minimizations, one for assembly and one for refinement.
doi:10.1371/journal.pone.0049240.g002
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Table 1. Benchmark set of proteins.

FULL SEQUENCE FILTERED SEQUENCE

PDB id Naa Nsse Na Nb CO RCO Naa Nsse Na Nb CO RCO

1BGCA 174 7 7 0 67.75 0.39 108 5 5 0 81.94 0.47

1EYHA 144 8 8 0 33.59 0.23 107 8 8 0 36.48 0.25

1FQIA 147 9 9 0 44.35 0.30 90 9 9 0 46.87 0.32

1GAKA 141 7 7 0 57.17 0.41 96 6 6 0 51.38 0.36

1GYUA 140 10 2 8 34.86 0.25 63 8 0 8 32.51 0.23

1IAPA 211 11 11 0 60.11 0.28 123 9 9 0 77.40 0.37

1ICXA 155 13 6 7 47.25 0.30 103 10 3 7 46.52 0.30

1J27A 102 6 2 4 44.41 0.44 76 6 2 4 46.89 0.46

1JL1A 155 10 5 5 52.69 0.34 97 10 5 5 50.41 0.33

1LKIA 180 8 6 2 73.33 0.41 113 5 5 0 76.37 0.42

1LMIA 131 10 1 9 40.95 0.31 63 9 0 9 41.77 0.32

1OXJA 173 11 11 0 35.54 0.21 108 8 8 0 30.49 0.18

1OZ9A 150 10 5 5 34.00 0.23 101 9 5 4 37.53 0.25

1PBVA 195 10 10 0 30.84 0.16 128 10 10 0 30.06 0.15

1PKOA 139 13 3 10 44.12 0.32 58 9 0 9 43.50 0.31

1Q5ZA 177 11 11 0 40.42 0.23 77 6 6 0 46.33 0.26

1RJ1A 151 8 8 0 45.07 0.30 113 7 7 0 41.83 0.28

1T3YA 141 12 6 6 30.33 0.22 83 9 4 5 25.99 0.18

1TP6A 128 9 3 6 32.97 0.26 94 9 3 6 31.72 0.25

1TQGA 105 4 4 0 36.73 0.35 88 4 4 0 38.04 0.36

1TZVA 142 9 9 0 32.42 0.23 97 7 7 0 35.14 0.25

1UAIA 224 18 2 16 57.10 0.25 114 15 0 15 55.64 0.25

1ULRA 88 7 2 5 40.11 0.46 55 7 2 5 36.68 0.42

1VINA 268 16 16 0 51.29 0.19 156 12 12 0 51.04 0.19

1X91A 153 6 6 0 48.33 0.32 113 5 5 0 46.98 0.31

1XAKA 83 7 0 7 30.22 0.36 38 6 0 6 33.08 0.40

1XKRA 206 14 6 8 65.80 0.32 147 14 6 8 66.11 0.32

1XQOA 256 14 14 0 60.32 0.24 162 14 14 0 67.52 0.26

1Z3XA 238 14 14 0 36.63 0.15 129 13 13 0 32.88 0.14

2AP3A 199 7 7 0 53.65 0.27 156 5 5 0 55.95 0.28

2BK8A 97 10 1 9 35.03 0.36 47 7 0 7 30.67 0.32

2CWRA 103 9 0 9 35.71 0.35 60 8 0 8 33.53 0.33

2EJXA 139 10 3 7 41.78 0.30 107 10 3 7 38.38 0.28

2F1SA 186 12 12 0 30.75 0.17 115 12 12 0 35.40 0.19

2FC3A 124 10 6 4 47.78 0.39 80 9 5 4 51.27 0.41

2FM9A 215 10 10 0 58.23 0.27 153 9 9 0 59.69 0.28

2FRGP 106 11 2 9 36.63 0.35 64 9 0 9 33.94 0.32

2GKGA 127 11 6 5 32.56 0.26 80 10 5 5 32.51 0.26

2HUJA 140 4 4 0 50.34 0.36 99 4 4 0 53.84 0.38

2IU1A 208 11 11 0 42.10 0.20 126 10 10 0 43.75 0.21

2JLIA 123 8 4 4 30.25 0.25 69 8 4 4 29.23 0.24

2LISA 136 6 6 0 55.90 0.41 91 5 5 0 53.23 0.39

2OF3A 266 16 16 0 34.76 0.13 202 16 16 0 31.79 0.12

2OSAA 202 11 11 0 49.60 0.25 124 9 9 0 50.70 0.25

2QZQA 152 13 3 10 46.24 0.30 63 7 0 7 52.92 0.35

2R0SA 285 16 16 0 58.40 0.20 165 13 13 0 57.84 0.20

2RB8A 104 8 0 8 33.84 0.33 46 7 0 7 29.12 0.28

2RCIA 204 13 7 6 63.82 0.31 126 10 4 6 63.77 0.31

2V75A 104 5 5 0 32.84 0.32 65 5 5 0 34.26 0.33
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using PSIPRED and JUFO secondary structure prediction. For

this set of benchmark proteins, SSE pools generated using

PSIPRED exhibited higher Q3 values (79.6% 610.6 vs. 70.2%

611.9) and higher native SSE recovery (96.1% 66.4 vs. 90.3%

610.7) when compared to JUFO. This trend is also observed for

shift values (3.162.2 vs. 64.362.8) which measure the sum of the

deviations in first and last residues of the predicted SSEs when

compared with native SSEs. Although PSIPRED has a better

overall performance, a combined pool of PSIPRED and JUFO has

the highest native SSE recovery (96.6%) and the lowest shift (2.7).

Because the SSE pool is constructed in a pre-processing step,

secondary structure prediction methods can be changed or SSEs

can be manually adjusted if desired.

Two-stage Assembly and Refinement Protocol Separates
Moves by type and Amplitude

BCL::Fold samples the conformational search space by a variety

of SSE-based moves. These moves coupled with exclusion of loop

residues, provide a significant advantage in fast sampling of

different topologies. The minimization process is divided into two

stages. The ‘‘assembly’’ stage consists of large amplitude transla-

tion or rotations and moves that add or remove SSEs (Movies in

Table S5: row ‘‘Assembly). Other moves central to this phase

shuffle b-strands within b-sheets or break large b-sheets to create

b-sandwiches. The ‘‘refinement’’ stage focuses on small amplitude

moves that maintain the current topology but optimize interac-

tions between SSEs and introduce bends into SSEs (Movies in

Table S5: row ‘‘Refinement). Currently both stages utilize the

same energy function (compare companion BCL::Score manu-

script).

Once the SSE pool is input, the algorithm initializes the energy

functions and move sets with corresponding weight sets for

assembly and refinement stages. A starting model for the

minimization is created by inserting a randomly selected SSE

from the pool into an empty model. The starting model is passed

to the minimizer which executes assembly and refinement

minimization. The assembly stage terminates after 5000 steps in

total or after 1000 consecutive steps that did not improve the

score. The refinement stage terminates after 2000 steps in total or

400 consecutive steps that did not improve the score. In general, a

move can result in one of four outcomes (Figure S1): ‘‘improved’’

in score, ‘‘accepted’’ through Metropolis criterion, ‘‘rejected’’ as

score worsened, or ‘‘skipped’’ as SSE elements required for the

move are not present in the model. The temperature is adjusted

dynamically based on the ratio of accepted steps (see Methods).

The Metropolis outcome ‘‘skipped’’ is introduced in the algorithm

to deal with the non-applicability of certain steps to the model in

the optimization. Although particular moves could be disabled

before selecting them randomly, they are selected and counted as

‘‘skipped’’.

A comprehensive list of all moves used in BCL::Fold is given in

Table S1 (assembly stage) and Table S2 (refinement) along with

brief descriptions. The moves are categorized into six main

categories; (1) adding SSEs, (2) removing SSEs, (3) swapping SSEs,

(4) single SSE moves, (5) SSE-pair moves, and (6) moving domains,

i.e. larger sets of SSEs. Representations for a selection of moves

used in BCL::Fold are illustrated in Figure 3. SSE, SSE-pair and

domain moves are further categorized into specific versions for a-

helices, and b-strands or a-helix domains, and b-sheets, resulting

in a total of nine individual categories. The relative probability or

weight for each move category is initialized at the beginning of the

minimization and depends on the SSE content of the pool. For

Table 1. Cont.

FULL SEQUENCE FILTERED SEQUENCE

PDB id Naa Nsse Na Nb CO RCO Naa Nsse Na Nb CO RCO

2VQ4A 106 10 1 9 33.71 0.32 54 8 0 8 32.07 0.30

2WJ5A 101 7 1 6 31.44 0.31 42 6 0 6 28.26 0.28

2WWEA 127 8 5 3 34.86 0.27 69 7 4 3 35.10 0.28

2YV8A 164 14 1 13 59.67 0.36 79 12 0 12 56.88 0.35

2YXFA 100 9 1 8 32.85 0.33 46 7 0 7 31.37 0.31

2YYOA 171 14 1 13 50.72 0.30 66 12 0 12 58.41 0.34

2ZCOA 293 16 16 0 51.60 0.18 205 15 15 0 56.53 0.19

3B5OA 244 11 11 0 83.49 0.34 169 9 9 0 85.09 0.35

3CTGA 129 11 7 4 33.78 0.26 68 9 5 4 32.00 0.25

3CX2A 108 10 2 8 39.67 0.37 53 7 0 7 37.05 0.34

3FH2A 146 9 9 0 43.06 0.29 100 9 9 0 42.92 0.29

3FHFA 214 13 13 0 51.79 0.24 147 12 12 0 58.19 0.27

3FRRA 191 9 9 0 54.64 0.29 141 9 9 0 55.61 0.29

3HVWA 176 14 7 7 48.29 0.27 109 11 5 6 51.62 0.29

3IV4A 112 11 6 5 35.13 0.31 77 9 4 5 32.98 0.29

3NE3B 130 11 6 5 42.02 0.32 81 9 4 5 48.43 0.37

3OIZA 99 7 3 4 26.73 0.27 63 7 3 4 25.52 0.26

For each of the 64 proteins in the benchmark set, following are displayed: 4 letter code PDB id and 1 letter code chain id, number of amino acids (Naa), number of
secondary structure elements(Nsse), number of a-helices (Na), number of b-strands (Nb), contact order (CO), relative contact order (RCO). The left section of the table
identified as ‘‘original sequence’’ displays statistics for the full sequence protein, while the ‘‘filtered sequence’’ statistics are calculated only on amino acids that are
found in secondary structure elements that satisfy the length criteria; at least 5 residues for a-helices and 3 residues for b-strands.
doi:10.1371/journal.pone.0049240.t001
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Table 2. Secondary structure pool statistics for the benchmark proteins.

pdb id PSIPRED JUFO PSIPRED+JUFO

Q3 %found shift Q3 %found shift %found shift

1BGCA 88.7 100.0 4.2 81.6 100.0 6.0 100.0 4.2

1EYHA 87.7 100.0 3.5 69.0 87.5 5.3 100.0 3.5

1FQIA 82.2 88.9 1.6 74.8 88.9 4.6 88.9 1.5

1GAKA 87.4 100.0 7.8 68.0 83.3 6.6 100.0 4.5

1GYUA 86.8 100.0 1.1 75.4 100.0 2.1 100.0 0.9

1IAPA 82.1 100.0 6.1 78.8 100.0 5.7 100.0 5.4

1ICXA 84.8 100.0 1.7 76.1 90.0 2.1 100.0 1.6

1J27A 96.2 100.0 0.5 71.3 83.3 2.4 100.0 0.5

1JL1A 75.5 100.0 4.1 66.7 100.0 5.4 100.0 4.0

1LKIA 75.9 80.0 10.3 44.1 80.0 16.8 80.0 10.3

1LMIA 53.7 66.7 2.8 42.5 66.7 3.8 66.7 2.5

1OXJA 83.5 100.0 6.3 76.2 100.0 4.6 100.0 2.3

1OZ9A 91.1 100.0 1.0 79.3 88.9 2.0 100.0 0.8

1PBVA 93.9 100.0 0.8 89.3 100.0 1.4 100.0 0.6

1PKOA 77.1 100.0 1.8 62.8 88.9 2.6 100.0 1.6

1Q5ZA 76.3 100.0 3.2 64.0 100.0 3.8 100.0 1.3

1RJ1A 90.2 100.0 6.0 86.6 100.0 7.4 100.0 5.3

1T3YA 73.0 100.0 2.7 77.8 100.0 2.2 100.0 2.0

1TP6A 75.5 88.9 2.6 58.8 88.9 5.0 88.9 2.6

1TQGA 96.6 100.0 0.8 82.2 100.0 4.0 100.0 0.5

1TZVA 84.8 100.0 6.4 80.0 100.0 7.0 100.0 6.1

1UAIA 68.3 93.3 1.9 64.8 86.7 2.0 100.0 1.5

1ULRA 90.2 100.0 0.9 76.5 100.0 2.3 100.0 0.7

1VINA 83.5 100.0 2.1 71.8 83.3 4.2 100.0 1.8

1X91A 88.6 100.0 2.6 79.2 80.0 4.3 100.0 2.6

1XAKA 51.2 83.3 2.8 27.3 50.0 2.3 83.3 2.8

1XKRA 85.0 92.9 1.5 80.4 85.7 1.2 92.9 1.2

1XQOA 71.8 92.9 4.5 62.5 85.7 4.3 92.9 3.3

1Z3XA 82.6 92.3 1.3 70.6 84.6 7.9 100.0 3.8

2AP3A 81.6 100.0 6.4 76.3 100.0 12.0 100.0 6.0

2BK8A 94.0 100.0 0.4 72.9 100.0 1.9 100.0 0.4

2CWRA 77.4 100.0 2.3 75.8 87.5 1.3 100.0 1.6

2EJXA 71.4 90.0 2.7 47.3 70.0 6.6 90.0 2.7

2F1SA 83.3 91.7 1.5 76.0 83.3 2.1 91.7 1.3

2FC3A 84.4 100.0 1.6 68.7 88.9 3.8 100.0 1.4

2FM9A 85.5 100.0 5.7 85.2 100.0 2.8 100.0 2.6

2FRGP 69.1 88.9 2.1 68.8 88.9 2.5 88.9 2.0

2GKGA 90.0 100.0 0.8 73.6 80.0 1.3 100.0 0.7

2HUJA 94.0 100.0 1.5 83.8 100.0 5.3 100.0 1.5

2IU1A 82.0 90.0 2.7 77.7 90.0 11.4 90.0 2.6

2JLIA 65.2 100.0 3.0 64.4 100.0 4.3 100.0 3.0

2LISA 88.2 100.0 4.6 73.1 100.0 7.4 100.0 4.6

2OF3A 85.4 100.0 7.9 78.2 87.5 5.3 100.0 5.5

2OSAA 79.4 88.9 2.4 70.3 88.9 4.0 88.9 2.1

2QZQA 48.2 85.7 3.8 43.3 85.7 4.5 85.7 3.5

2R0SA 68.6 84.6 2.2 61.3 69.2 3.1 84.6 2.2

2RB8A 80.8 100.0 1.4 82.4 100.0 1.3 100.0 1.0

2RCIA 60.7 90.0 5.3 52.8 90.0 6.3 90.0 4.4

2V75A 76.9 100.0 3.6 72.6 100.0 4.0 100.0 3.2
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example, b-sheet moves are excluded if the given pool contains

only a-helices. This procedure limits the number of move trials

that are unsuccessful or ‘‘skipped’’ because the needed SSEs are

not in the model. As mentioned in the previous section, depending

on the amplitude, moves are categorized to be used in either the

assembly stage or the refinement stage. Out of 107 moves, 72 are

used exclusively in assembly and 33 are used exclusively in

refinement. Resizing SSEs (‘‘sse_resize_nterm’’ and ‘‘sse_resize_c-

term’’) are the only moves used in both stages. Table S1 and Table

S2 also provides statistics of how frequently each move leads to an

improved, accepted, rejected, or skipped status as well as the

average improvement in the score observed for all the improved

steps based on statistics collected on the 66 benchmark proteins.

Assembly moves have an average score improvement of 2100678

BCLEU (Table S1) while the refinement moves have an average

score change of 215610 BCLEU (Table S2).

The five individual moves with largest score improvements

either add SSEs or manipulate b-strands, including ‘‘add_strand_-

next_to_sheet’’, ‘‘sheet_pair_strands’’, ‘‘add_sse_short_loop’’ and

‘‘add_sse_next_to_sse’’. At the same time, these moves also lead to

improved models with a relatively high percentage, ranging from

10% to 30% of the cases where the move is not skipped. On the

other hand, these moves, especially ones including adding SSEs,

also lead to a high percentage of skipped steps. This is due to the

fact that the weight for these moves is currently not dynamically

adjusted depending on how many SSEs are already added to the

model. On the contrary, moves with small average score

improvements are less frequently skipped but also less frequently

accepted.

It is somewhat misleading to analyze the moves in isolation as

rearranging or refining the topology often requires a series of

different moves and success of one move relies on the availability

of suitable companion moves. For further investigation of which

types of moves are more complementary to each other, trajectories

from runs for all benchmark proteins were analyzed. For each pair

of move type M1 and M2, a non-symmetric correlation measure

C M1,M2ð Þ was calculated using the equation below which

measures how likely it is that a move M1 leads to a step where M2
is applied to improve the current model.

C M1,M2ð Þ~ log
P M2 I DM1 AIð Þ

P M2 Ið Þ � P M1 AIð Þ

� �

where P M2 I DM1 AIð Þ is the fraction of M1 improved moves

preceded by a M1 accepted or improved move in the previous 50

steps; P M2 Ið Þ is the fraction of M2 moves that lead to an

improved step; and P M1 AIð Þ is the fraction of M1 moves that

lead to an improved or accepted step. If any of the probabilities

are 0, the correlation value is assigned as -3. A higher correlation

value C M1,M2ð Þ indicates that move M1 is more likely to be

observed as an improved or rejected step in close proximity before

a M2 move is observed in an improved step.

Figure 4 depicts heat maps for pairwise correlation values for all

assembly moves (Figure 4A) and refinement moves (Figure 4B). As

observed in both panels, certain move pairs have an increased

chance of producing energetically favorable models. As seen in the

heat map for assembly (Figure 4A), add moves (#1–3) often

precede successful move combinations since whenever a new SSE

is added, it is expected that is not at the energetically optimal

Table 2. Cont.

pdb id PSIPRED JUFO PSIPRED+JUFO

Q3 %found shift Q3 %found shift %found shift

2VQ4A 74.2 100.0 2.1 71.0 75.0 1.3 100.0 2.0

2WJ5A 83.7 100.0 0.7 73.5 100.0 1.7 100.0 0.8

2WWEA 79.8 100.0 4.3 66.7 71.4 3.2 100.0 4.1

2YV8A 81.2 91.7 1.0 75.3 83.3 1.3 91.7 0.5

2YXFA 69.2 100.0 2.3 55.7 100.0 3.4 100.0 2.1

2YYOA 69.1 100.0 2.2 62.0 100.0 3.0 100.0 2.1

2ZCOA 83.8 93.3 5.7 81.0 100.0 8.3 100.0 5.1

3B5OA 72.3 100.0 9.1 58.6 88.9 8.1 100.0 7.4

3CTGA 83.1 100.0 1.4 67.5 77.8 2.4 100.0 1.4

3CX2A 75.4 100.0 1.3 67.2 100.0 2.4 100.0 1.4

3FH2A 96.0 100.0 0.4 89.4 100.0 3.4 100.0 0.3

3FHFA 68.9 91.7 5.4 63.3 91.7 8.4 100.0 6.7

3FRRA 93.0 88.9 5.4 86.2 88.9 6.5 88.9 5.3

3HVWA 60.0 90.9 3.9 54.6 72.7 4.0 90.9 2.5

3IV4A 83.1 100.0 1.7 81.0 100.0 2.0 100.0 1.3

3NE3B 80.9 100.0 1.3 76.7 100.0 2.3 100.0 1.1

3OIZA 68.0 100.0 3.6 64.5 100.0 3.9 100.0 3.3

avg 79.6 96.1 3.1 70.2 90.3 4.3 96.6 2.7

stdev 10.6 6.4 2.2 11.9 10.7 2.8 6.4 1.9

The table depicts pool Q3 score, %found (percent of native SSEs identified by predictions) and average shifts for the pools generated using secondary structure
prediction methods PSIPRED and JUFO for all of the 66 proteins in the benchmark set. The last two rows show the average and the standard deviation for pool
agreement score and Q3 measure. The statistics is repeated for the combined pool of PSIPRED and JUFO.
doi:10.1371/journal.pone.0049240.t002
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Figure 4. Correlation of moves used in BCL::Fold. The correlation of all move pairs is depicted as heat maps for (A) assembly moves (B)
refinement moves. For both heat maps, the moves are ordered in the same order as in Tables S1 and S2 respectively.
doi:10.1371/journal.pone.0049240.g004

Figure 3. SSE-based moves allow rapid sampling in conformational search space. The types of moves used in the BCL::Fold protocol are
explained with a representative move set. (A) Single SSE moves: These moves can include adding a new SSE to the model from the pool as well as
translations/rotations/transformations. (B) SSE pair moves: One of the SSEs in the pair can be removed, the locations can be swapped and one can be
rotated around the other SSE which is used as a hinge to define rotation axis. (C) Domain based moves: These moves act on a collection of SSEs such
as a helical domain or b-sheet. The examples show how the locations of strands can be shuffled within a b-sheet or how an entire b-sheet can be
flipped or translated.
doi:10.1371/journal.pone.0049240.g003
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placement and will need further moves to optimize the location of

this SSE. A similar pattern can also be observed for swap moves

(#6–8). On the other hand, a-helix domain moves (#50–55) have

a tendency to be preceded by individual SSE (#9–24) or a-helix

moves (#25–35), while b-sheet moves (#56–74) are more

frequently preceded by individual b-strand moves (#36–43).

The refinement moves (Figure 4B) have a less pronounced pattern

compared to assembly moves since they introduce smaller

changes. Less often a second move is needed to compensate for

an accepted first move. a-helix pair moves (#26–27) preferably

precede a-helix domain moves (#28–30), while the ‘‘strand_-

translate_z_small’’ move (#21) is followed by b-sheet moves

(#31–35).

BCL::Fold Samples Native-like Topologies for 92% of
Benchmark Proteins

10,000 structural models were generated for each protein in the

benchmark set using BCL::Fold. Two separate runs were

performed with BCL::Fold, one using a SSE pool composed of

native SSE definitions as computed from the experimental

structures using DSSP [73]. A second run was performed using

a BCL::SSE predicted pool. To facilitate the analysis of models,

loops were constructed using a rapid CCD based method [38] (see

Methods and Movies in Table S5: rows ‘‘Loop grow’’, ‘‘Loop

close’’ and ‘‘Loop force close’’). However, in the present analysis

we focus on placement of SSEs to form the topology and evaluate

models using two qualities measures; RMSD100 (Ca root mean

square deviation normalized to a protein length of 100 residues

[74]) and Contact Recovery (CR). CR measures percentage of

native contacts recovered, where a contact is defined as the

presence of two amino acids of at least 12 residues sequence

separation and,8Å Cb distance. The average and standard

deviations of RMSD100 and CR values of the best models

generated by these runs can be found in Table 3. Figures 5 and 6

illustrate the best RMSD100 SSE-only and complete structural

models generated by BCL using predicted SSE pools for a

selection of benchmark proteins.

BCL::Fold using the correct secondary structure achieved

RMSD100-values of 5.561.6Å (SSE only models) and 6.861.7Å

(complete models). For simulations with predicted SSEs,

RMSD100 values of 6.061.6Å (SSE only models) and 7.261.7Å

(complete models) were obtained. For comparison, Rosetta [28]

generated models with RMSD100-values of 6.462.1Å. BCL::Fold

improved the RMSD100 when compared with Rosetta in 24 cases

(36%) with correct SSE definitions and in 19 cases (29%) using a

predicted SSE pool. When CR values are considered, BCL::Fold

using the correct secondary structure achieved 44.6615.1 (SSE

only models) and 45.0615.0 (complete models). For simulations

with predicted SSEs, CR-values of 39.6615.3 (SSE only models)

and 41.9615.0 (completed models) were obtained. For compar-

Figure 5. Structures for a selection of best RMSD100 complete models generated by BCL::Fold. Best complete models by RMSD100 with
a predicted pool generated by BCL::Fold for a selection of proteins. The generated models are rainbow colored and superimposed with the native
structure (gray) for the following proteins. The numbers refer to the RMSD100 of the models: (A) 1GYUA –6.39Å (B) 1ICXA –6.46Å (C) 1ULRA –4.73Å
(D) 1X91A –4.49Å (E) 1J27A –3.72Å (F) 1TP6A –6.83Å (G) 2CWRA 27.61Å (H) 2RB8A –5.09Å (I) 1RJ1A –5.33Å (J) 1TQGA 2.44Å (K) 2HUJA –3.37Å (L)
3OIZA –6.21Å (M) 2V75A –3.55Å.
doi:10.1371/journal.pone.0049240.g005
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ison, Rosetta generated models with CR-values of 39.4617.5.

BCL::Fold improved the recovery of native contacts when

compared with Rosetta in 47 cases (71%) with correct SSE

definitions and in 40 cases (60%) using a predicted SSE pool.

When best models by RMSD100 are considered, BCL::Fold

was able to predict the correct topology in 61 cases (92%)

independent of usage of correct or predicted SSE pools. Models

with correct topology, or native-like models, were defined as

having an RMSD100 value of less than 8.0Å. After loop

construction, native-like models are obtained for 50 cases (75%)

using correct SSE predictions and 41 cases (62%) using a predicted

SSE pool. In comparison, Rosetta constructed native-like models

for 45 cases (68%). When a CR value of.20% is taken as cutoff,

success rates change to 64 cases (97%) and 62 cases (94%),

respectively, for BCL::Fold and to 60 cases (91%) for Rosetta. We

attribute the deterioration of BCL::Fold models after loop

construction mostly to limited sampling performed at this stage

of the protocol as the present work focuses on topology assembly.

For further analysis, the best-scoring 100 models (1%) for each

protein and each method were kept. For these subsets the

percentage of targets where the best model by RMSD100 was

below 8.0Å were calculated. BCL::Fold using correct SSEs was

able to generate a,8.0Å RMSD100 model in top 1% by score for

56% of targets (SSE only models) and 39% (complete models).

These values for BCL::Fold simulations with predicted pools were

44% (SSE only models) and 22% (complete models), while being

43% for Rosetta. This was followed by a similar analysis where

CR measure was used instead of RMSD100. BCL::Fold using

correct SSEs was able to generate.20% CR models for 74% of

targets (SSE only models) and 79% (complete models). For

simulations with predicted pools, CR values were 73% (SSE only

models) and 76% (complete models), while being 74% for Rosetta.

Figure 7 provides the comparison of best RMSD100 and CR

values achieved for all benchmark proteins between Rosetta and

BCL. When RMSD100 values are considered, SSE-only models

for BCL runs with predicted SSE pools (Figure 7A left panel)

provide a better performance than Rosetta. As explained earlier,

SSE-only models are given an advantage due to the smaller

number of atoms over which RMSD100 values are calculated for

these models owing to the lack of flexible loop regions. When

complete models are compared with Rosetta (Figure 7A right

panel); it is observed that Rosetta produces lower RMSD100

models for more targets although performance correlates very

well. Figure 7B displays CR values giving a slight advantage to the

BCL in recovering native-like SSE contacts. These results are

promising for BCL::Fold especially given the fact that BCL::Fold

was designed with a focus on getting the SSE topology correct.

BCL::Fold performance varies between different targets, as

observed in the plots mentioned above. We wanted to investigate

whether there is a correlation of performance with sequence

Figure 6. Structures for a selection of best RMSD100 SSE-only models generated by BCL::Fold. Best SSE-only models by RMSD100 with a
predicted pool generated by BCL::Fold for a selection of proteins. The generated models are rainbow colored and superimposed with the native
structure (gray) for following proteins. The numbers refer to the RMSD100 of the models: (A) 1GYUA –4.11Å (B) 1ICXA –6.07Å (C) 1ULRA –3.61Å (D)
1X91A –4.08Å (E) 1J27A –3.15Å (F) 1TP6A –5.74Å (G) 2CWRA 25.66 Å (H) 2RB8A –2.91Å (I) 1RJ1A –4.86Å (J) 1TQGA –1.92Å (K) 2HUJA –2.57Å (L)
3OIZA –5.76Å (M) 2V75A –3.11Å.
doi:10.1371/journal.pone.0049240.g006
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Table 3. Best RMSD100 and CR values for models generated by BCL and Rosetta.

RMSD100 [Å] cr12 [%]

pdb id BCLN-SSE BCLN BCLP-SSE BCLP Rosetta BCLN-SSE BCLN BCLP-SSE BCLP Rosetta

1BGCA 2.94 4.25 5.41 6.29 7.06 61.11 59.26 45.37 49.07 42.59

1EYHA 6.06 6.92 5.87 7.20 4.30 28.69 31.15 41.80 37.70 40.77

1FQIA 7.17 7.60 6.20 8.06 5.37 38.46 36.92 40.00 44.62 32.58

1GAKA 4.90 7.06 6.38 7.69 4.60 42.59 42.59 29.63 32.41 66.67

1GYUA 4.41 6.39 4.11 6.39 5.96 58.68 58.68 61.16 61.16 51.24

1IAPA 6.46 7.55 7.38 8.23 5.65 27.12 27.12 22.03 22.03 19.11

1ICXA 6.51 6.80 6.07 6.46 5.59 45.74 46.28 51.06 48.40 37.44

1J27A 3.20 3.62 3.15 3.72 4.49 71.20 70.40 68.80 70.40 54.07

1JL1A 6.04 8.01 6.75 8.19 8.26 39.05 43.33 31.43 34.76 26.52

1LKIA 2.90 5.40 7.07 9.10 7.18 59.29 59.29 23.01 29.20 36.70

1LMIA 5.82 8.60 6.72 9.97 9.49 49.65 48.94 29.08 31.21 26.95

1OXJA 6.42 7.67 7.21 7.79 6.75 44.68 45.74 30.85 30.85 45.45

1OZ9A 5.78 6.88 5.22 5.93 5.39 38.36 43.40 40.25 40.88 37.50

1PBVA 8.02 9.02 8.75 9.14 6.47 28.30 28.30 30.19 31.13 40.00

1PKOA 6.03 7.81 7.58 8.15 8.43 43.07 40.88 38.69 39.42 27.74

1Q5ZA 5.64 8.03 7.28 8.56 8.93 40.00 40.00 41.54 43.08 21.28

1RJ1A 4.66 5.52 4.86 5.33 3.33 48.43 48.43 55.97 57.23 45.56

1T3YA 5.71 5.92 5.86 6.56 6.27 49.61 51.94 42.64 44.96 34.06

1TP6A 4.91 5.65 5.74 6.83 5.25 49.65 53.15 46.15 47.55 44.59

1TQGA 1.91 2.19 1.92 2.44 1.41 76.40 76.40 76.40 76.40 93.55

1TZVA 4.55 6.01 4.89 5.58 3.20 46.28 46.28 39.67 39.67 45.45

1UAIA 6.13 7.95 7.24 9.05 9.62 38.58 37.01 29.53 31.50 16.54

1ULRA 3.17 4.82 3.61 4.73 4.18 62.14 63.11 66.02 70.87 53.98

1VINA 7.42 8.53 7.62 8.68 8.48 25.46 25.46 20.83 21.76 21.98

1X91A 2.40 3.30 4.08 4.49 2.49 77.64 77.64 48.45 49.07 68.02

1XAKA 8.17 9.53 5.28 7.77 8.67 53.03 53.03 31.82 48.48 34.85

1XKRA 6.14 7.29 8.04 8.47 8.79 28.47 30.29 27.37 32.48 24.51

1XQOA 8.05 8.71 7.50 8.20 9.16 18.82 18.28 18.82 19.35 14.73

1Z3XA 7.74 9.19 7.58 9.59 8.44 24.27 24.27 22.33 22.33 30.37

2AP3A 2.78 3.16 3.67 6.06 4.17 52.52 51.08 43.17 42.45 52.26

2BK8A 5.09 6.89 4.81 7.13 4.27 56.41 57.69 55.13 55.13 80.77

2CWRA 5.99 6.05 5.66 7.63 7.46 45.80 45.04 44.27 48.85 26.72

2EJXA 6.28 6.64 7.48 7.89 5.17 41.43 42.14 29.29 35.00 38.82

2F1SA 6.68 7.93 7.61 8.26 7.34 27.27 28.28 25.25 26.26 27.27

2FC3A 4.90 7.39 5.63 6.78 5.75 34.62 40.00 36.92 46.92 25.36

2FM9A 6.22 7.05 6.26 6.95 6.37 24.05 24.05 21.52 22.78 25.14

2FRGP 4.67 5.69 5.38 6.41 6.53 57.02 56.14 53.51 53.51 35.96

2GKGA 3.43 4.31 3.89 4.40 3.45 52.10 52.94 47.06 48.74 58.20

2HUJA 2.12 2.98 2.57 3.37 3.65 71.31 71.31 66.39 67.21 47.29

2IU1A 6.70 7.99 6.84 8.04 7.16 25.16 25.79 20.13 23.27 27.06

2JLIA 6.18 7.11 6.93 8.14 6.46 46.59 46.59 37.50 42.05 36.89

2LISA 4.77 6.03 5.47 7.22 5.71 43.33 43.33 41.11 45.56 59.79

2OF3A 8.92 9.26 8.25 9.30 8.30 20.24 20.65 19.43 20.65 26.58

2OSAA 6.55 7.78 7.21 8.82 8.05 27.14 27.14 28.57 32.86 24.86

2QZQA 5.48 8.73 6.10 8.40 9.89 63.24 61.03 47.06 52.94 34.81

2R0SA 6.95 9.53 7.80 10.29 10.27 24.49 24.49 23.13 23.13 21.30

2RB8A 3.27 5.07 2.91 5.09 4.91 62.11 61.05 68.42 70.53 60.00

2RCIA 5.32 6.99 9.17 10.20 10.29 47.50 48.75 22.08 24.58 16.06

2V75A 3.26 3.66 3.11 3.55 2.29 67.12 65.75 60.27 60.27 85.71
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length, fold complexity, secondary structure content, or accuracy

of the secondary structure prediction. For this purpose, for each

benchmark protein, the sequence length is plotted against NCO

values (Figure 8A left panel) and each point is colored according to

the highest CR value achieved for the complete models generated

by BCL::Fold runs using predicted SSE pools for that protein. As

seen in the plots, the best performing proteins (.60%), are limited

to,150 residue proteins. On the other hand, 40% to 60% CR

values were achieved for proteins up to 200 residues, and 20%–

40% CR values were attainable for proteins up to 275 residues.

Similar numbers were observed for Rosetta models (Figure 8A

right panel).

Accurate Secondary Structure Improves Quality of
BCL::Fold Models only Slightly

Comparison of BCL::Fold runs with either predicted or correct

SSEs (Table 3) reveals that using native SSE definitions provides

an average improvement of 0.64Å in RMSD100 for SSE only

models and 0.40 Å RMSD100 for complete models after loop

construction. Although the effect of secondary structure prediction

accuracy on average of best RMSD100 models is modest, this

effect is not directly related to Q3 values, but rather due to the

nature of the BCL::Fold assembly protocol. One interesting

example is 1LKIA, a 180 residue protein with Q3 values of 75.9

(PSIPRED) and 44.1 (JUFO). Although this protein has a mid-

range PSIPRED Q3 value, it exhibits the largest deterioration in

both RMSD100 and CR, which is more likely to be explained by

the high average shift values; 10.3 residues (PSIPRED) and 16.8

residues (JUFO). Another such example is 1LMIA, which has low

Q3 value of 53.7 and 42.5 for PSIPRED and JUFO respectively,

accompanied by a low rate correct SSE identification of 67%. On

the other hand, if the secondary structure prediction is extremely

accurate as in the case of 1TQGA, 1J27A, 3FH2A, 2BK8A (all

with PSIPRED Q3.94.0), RMSD100 values deteriorate less than

0.3Å when moving from perfect to predicted secondary structure.

Although accurate secondary structure prediction improves the

overall accuracy of BCL::Fold, the results indicate that it is not a

requirement. As described in Table S1 and Table S2, BCL::Fold

utilizes a set of moves to dynamically resize and split SSEs during

the minimization to compensate for the inaccuracies in secondary

structure prediction.

The SSE content (percentage of residues in a sequence that

reside in an SSE as opposed to coil) versus maximum Q3 value of

the pool generated (using the highest Q3 value of the PSIPRED

and JUFO predictions) for each benchmark protein is plotted in

Figure 8B. Each point is colored according to the best CR value

achieved for that target in complete models generated in

BCL::Fold runs using predicted SSE pools (Figure7B left panel).

Nearly all targets with highest CR values (.60% colored purple)

have ,80% or higher Q3 values, although the SSE content for

these targets can range from as little as 40% to as high as 85%.

Similar plots are also provided for Rosetta models for comparison

(Figure 8B right panel). When models for the proteins with,75%

maximum Q3 values are considered, a clear decline in the best CR

values could be observed for Rosetta models in comparison to

BCL models. For these proteins with relatively low confidence

secondary structure predictions, the Rosetta generated best CR

model was,20% for 4 cases, and between 20% and 40% for 11

cases, while these numbers were 3 and 6 respectively for

BCL::Fold.

Table 3. Cont.

RMSD100 [Å] cr12 [%]

pdb id BCLN-SSE BCLN BCLP-SSE BCLP Rosetta BCLN-SSE BCLN BCLP-SSE BCLP Rosetta

2VQ4A 4.18 6.65 5.28 7.20 9.18 57.94 57.01 59.81 59.81 36.45

2WJ5A 5.80 8.48 6.41 8.63 7.86 67.80 66.10 71.19 71.19 77.97

2WWEA 4.92 6.43 5.30 6.22 5.97 45.95 48.65 48.65 48.65 41.38

2YV8A 5.71 7.85 5.54 7.48 8.53 47.62 47.02 43.45 41.07 26.19

2YXFA 5.84 7.28 6.13 6.65 4.38 51.46 51.46 48.54 51.46 53.40

2YYOA 6.68 8.55 6.72 7.94 9.13 37.91 39.22 40.52 41.18 23.53

2ZCOA 7.75 8.42 7.63 8.33 8.20 18.28 19.03 18.28 19.03 17.18

3B5OA 6.46 7.28 8.62 8.96 9.10 23.11 23.11 9.78 15.11 11.43

3CTGA 5.52 6.89 5.61 6.93 4.07 52.11 53.52 45.07 50.70 48.72

3CX2A 4.96 7.88 7.27 7.04 8.20 54.37 54.37 49.51 54.37 47.57

3FH2A 6.37 7.34 6.35 7.55 4.73 33.33 33.97 27.56 28.21 41.85

3FHFA 8.60 9.17 7.81 8.88 7.54 19.42 21.36 16.50 18.45 27.07

3FRRA 6.50 7.50 4.53 5.87 5.46 30.82 30.82 33.33 34.59 45.25

3HVWA 6.10 8.02 6.48 6.49 6.69 39.61 40.26 30.52 37.66 25.95

3IV4A 3.34 4.68 4.54 5.80 3.98 60.61 61.62 52.53 49.49 40.95

3NE3B 5.01 5.65 6.41 7.01 5.60 45.45 48.25 48.25 51.05 34.10

3OIZA 4.48 5.00 5.76 6.21 4.20 50.00 50.96 30.77 41.35 56.76

avg 5.50 6.81 6.04 7.21 6.42 44.55 44.96 39.63 41.88 39.42

stdev 1.61 1.73 1.58 1.68 2.16 15.13 14.81 15.31 14.96 17.52

The table lists for all proteins, the best RMSD100 and best CR observed for models generated by BCL and Rosetta. BCL results are presented in 4 columns: SSE-only
models using native SSE definitions (BCLN-SSE), complete models using native SSE definitions (BCLN), SSE-only models using predicted SSE definitions (BCLP-SSE),
complete models using predicted SSE definitions (BCLP). The 5th columns under RMSD100 and CR are for Rosetta models.
doi:10.1371/journal.pone.0049240.t003
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BCL::Fold BETA was Evaluated in CASP9 Experiment
All techniques for protein structure prediction are evaluated

every two years via the Critical Assessment of Techniques for

Protein Structure Prediction (CASP) experiment [75,76,77]. An

early version of BCL::Fold (BCL::Fold BETA) participated in

CASP9 and predictions were submitted for 58 of 63 targets given

in the human predictor category. For each target 50,000 models

were generated, the top 10,000 by BCL score were selected for

clustering analysis. The five best scoring models as well as the best

scoring models in each of the large clusters (,20) underwent loop

construction and side chain packing using Rosetta. The five

models for submission were selected from these full atom models as

the largest cluster centers. In cases were a template was readily

available, the fifth model for submission was the BCL::Fold model

with the smallest RMSD to the comparative model built by

MODELLER [78]. This approach was chosen to test the

BCL::Fold sampling independent from BCL::Score (compare

companion BCL::Score manuscript).

Targets in CASP9 were biased towards proteins of known fold.

In fact, only 14 out of the 60 human targets had no sequence

detectable templates [79]. However, BCL::Fold treated all targets

‘‘free modeling (FM)’’ to maximally leverage the blind CASP

experiment to test the algorithm. In cases where a template was

available we would not expect to perform better than template-

based methods. The remaining few cases represent a too small

sample size to comprehensively compare BCL::Fold with other de

novo protein structure prediction methods, also because of the

BETA stage of that version. Therefore we present anecdotal

examples where the potential of this early version of the algorithm

became apparent. A more detailed evaluation will be performed

during CASP10 in summer 2012.

For FM target T0608_1, the first submission by BCL::Fold had

an RMSD of 4.3Å and ranked 9th out of 132 groups (Figure 9).

BCL::Fold was also able to produce native-like models and pick

them for submission for the following targets; T0580 (105 residues

4.4Å RMSD), T0619 (111 residues 5.9Å RMSD), T0602 (123

Figure 7. Comparison of best RMSD100 and CR values for BCL and Rosetta. Scatter plot comparing (A) best RMSD100 or (B) best CR SSE-
only (left) and complete (right) BCL models vs. Rosetta models. The BCL models considered are from BCL::Fold runs using predicted SSE pools. (B)
Scatter plot comparing best CR SSE-only (left) and complete (right) BCL models vs. Rosetta models. The BCL models considered are from BCL::Fold
runs using predicted SSE pools.
doi:10.1371/journal.pone.0049240.g007
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residues 7.7Å RMSD), T0630 (132 residues 8.4Å RMSD), T0627

(261 residues 8.9Å RMSD).

Conclusion
In conclusion, we demonstrate that assembly of SSEs is a viable

approach to predict the topology of a protein of unknown fold.

BCL::Fold assembles the correct topology for about 3 out of 5

proteins with sequence lengths ranging from 88 residues to 293

residues and 4 to 15 SSEs. BCL::Fold assembly runs range from 1

minute for the smallest protein to 10 minutes for the largest

protein with a linear scaling (Figure S3). A detailed run-time

comparison to other prediction methods was not conducted;

however Rosetta and BCL::Fold per-model runtimes are currently

at the same magnitude (Data for Rosetta not shown). With the

maturation of the program code and the method, we expect that

runtimes will decrease significantly, and due to the rapid sampling

of topologies typically fewer models need to be generated as for

this study.

The impact of predicted versus correct secondary structure is

small, demonstrating that BCL::Fold can efficiently compensate

for inaccuracies in secondary structure prediction. As mentioned

above, BCL::Fold currently focuses on topological sampling of

SSEs neglecting backbone flexibility within individual SSEs. This

leads to increased RMSD100 values especially in b-sheet proteins

where despite correct topology, the curvature of b-sheet is not

correctly reproduced. With development of more efficient SSE

backbone bending strategies BCL::Fold can overcome this

limitation.

Figure 8. Determinants of high CR values in BCL and Rosetta models. (A) Plot of sequence length vs. relative contact order (RCO) for all
benchmark proteins. (B) Plot of percentage of amino acids found in SSEs vs. maximum Q3 value achieved from JUFO or PSIPRED pools for all
benchmark proteins. Individual plots are presented for models from BCL::Fold runs using predicted SSE pools (left panels) and Rosetta models (right
panels). Points in both (A) and (B) are colored according to the best CR value achieved for that benchmark protein in BCL runs using predicted SSE
pools and complete models;,20% (red), 20% to 40% (orange), 40% to 60% (green) and.60% (dark green).
doi:10.1371/journal.pone.0049240.g008
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As expected, BCL::Fold’s overall performance, in terms of both

RMSD100 and CR, is more robust for smaller proteins. There is a

linear dependency, more clearly seen with decreasing CR values,

the larger the protein, the larger the conformational space to be

sampled. Out of 31 a-helical proteins tested, BCL::Fold was able

generate,8.0Å RMSD100 models for 28 cases (SSE only models)

and 15 cases (complete models). Out of 16 b-proteins, this was true

for all 16 cases (SSE only models) and 11 cases (complete models).

For the remaining 18 ab proteins, native-like models were

generated 16 (SSE only models) and 15 cases (complete models).

One of the major reasons of the difficulty experienced with a

subset of these targets, as in the case of a-helical proteins 1LKIA,

1Z3XA and 2R0SA, and b-sheet proteins 1LMIA, 2QZQA and

1XAKA, can be attributed to inaccurate secondary structure

predictions in terms of Q3 as well as being unable to identify one

or more native SSEs.

As discussed in the introduction, BCL::Fold was designed for

combination with limited experimental datasets. A version of

BCL::Fold which integrates low resolution restraints from cryo-

EM was previously shown to predict the correct topology for a-

helical proteins [49]. Incorporation of limited experimental data

from NMR and EPR experiments, folding of membrane proteins,

and better reproduction of strongly bent SSEs are future directions

of our research.

During review of the present manuscript, two related studies

have been published. Lange et al. use the recombination of

structural features that occur during the initial states of the Rosetta

sampling protocol to more efficiently sample b-sheet topologies

[80]. While similar in spirit, the method is restricted to,beta.-

sheets and structural features are gathered from models initially

sampled possibly limiting the search space. This is different to our

method, where improved sampling includes a-helices and b-

strands and is not biased by an initial set of models. Simoncini

et al. present ‘‘A Probabilistic Fragment-Based Protein Structure

Prediction Algorithm’’ [81]. Their method ‘‘EdaFold’’ increases

the probability for picking fragment conformations from models

with low energy. This enables focused sampling of low energy

conformations, assuming that they are more likely to correspond

to the native protein topology. It requires that sampling

trajectories communicate with each other to adjust the fragment

probabilities. The amino acid sequences are still ‘‘folded’’ without

breaks and the benchmark proteins used have only up to 128

residues, significantly less than what is used in the present study.

Materials and Methods

BCL::Fold Protocol and Benchmark Analysis
The flowchart of the BCL::Fold protocol is shown in Figure 2.

The amino acid sequence and associated secondary structure

predictions are utilized to generate a pool of SSEs (Figure 2A). The

SSE pool is likely to have multiple copies for the one SSE with

varying start and end points. The algorithm then selects one SSE

at random from the pool and places it in the origin to start the

simulation. The minimization protocol is composed of a Monte

Carlo sampling algorithm (Figure 2B) coupled with knowledge-

based energy potentials (Figure 2C). Once a specified number of

maximum iterations are reached the minimization is ended and

the model with the best energy is returned as the final model

Figure 9. BCL::Fold results from CASP9. The best submitted model out of the 5 top submissions by RMSD (rainbow colored) superimposed with
the native structure for (A) T0608_1–89 residues, 4.3Å RMSD (B) T0580 - 105 residues 4.44Å RMSD, (C) T0619 - 111 residues, 5.86Å RMSD (D) T0602 -
123 residues, 7.75Å RMSD (E) T0630 - 132 residues, 8.42Å RMSD (F) T0627 - 261 residues, 8.90Å RMSD.
doi:10.1371/journal.pone.0049240.g009
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(Figure 2D). For each of the benchmark proteins, two BCL::Fold

runs with 10,000 models each were completed, one using

secondary structure definitions provided in the PDB files and

one using the secondary structure predictions.

Preparation of Benchmark Set
The benchmark protein set was collected using the PISCES

culling server and includes 66 proteins of lengths ranging from 83

to 293 residues with,30% sequence similarity and X-ray

determined structures with a resolution,2.0 Å. The set contains

66 different topologies including 31 all a-helical, 16 all b-strand,

and 19 mixed ab folds (Table 1). The primary sequence and

experimental structure of the selected proteins were downloaded

from the PDB [82]. The secondary structures were determined

using DSSP [73], since the PDB definitions were inconsistent in

some places.

Secondary Structure Prediction and Preparation of SSE
Pool

JUFO [13,69] and PSIPRED [70] were obtained from the

authors of the methods and installed locally. In addition the

sequence alignment tool BLAST [83,84] was installed locally to

create the position specific scoring matrices for input to JUFO and

PSIPRED. These are provided as input to the BCL::SSE

application which generates a pool of likely SSEs given secondary

structure prediction and BLAST profile. The prediction methods

assign probabilities for each residue to be in one of three states –

helix, strand or coil. BCL::SSE first generates an initial pool by

taking the highest probability for each residue and assigning it the

corresponding secondary structure type. A threshold of 0.5 is

applied for a-helices and b-strands: if the probability is below the

threshold, then the residue is assigned as a coil even if the highest

probability corresponds to a-helix and b-strand. This initial pool is

then refined using a Monte-Carlo based minimization composed

of 1000 steps. The minimization employs moves that alter the

secondary structure assignment of a single residue or divide a SSE,

while the energy function used evaluates the correspondence of the

secondary structure predictions to the secondary structure

assignments generated (see companion BCL::Score paper for

more details). For both the initial pool as well as the final pools

generated by BCL::SSEs, a-helices shorter than 5 residues and b-

strands shorter than 3 residues are excluded.

SSE Pool Evaluation
Q3 is the most commonly used method for evaluating secondary

structure assignments [72]. Q3 evaluates the percentage of

residues with correct secondary structure assignments. However,

since the actual identification of an SSE is more important than

individual secondary structure assignments for BCL::Fold, we

introduced additional measures: the percentage of native SSEs

that were correctly identified as well as the shift, which is sum of

deviations in the beginning and ends of predicted SSEs compared

to native SSEs.

Monte Carlo-based Sampling Algorithm and
Temperature Control

BCL::Fold starts the minimizations with a structural model that

contains a single SSE picked randomly from the pool. At each

iteration, a move is selected randomly from the move set and

applied to the model to produce a new structural model. The

resultant model is evaluated by a consensus energy function, and

whether to accept or reject this model is determined by the

Metropolis criterion [85],

paccept~ min 1,e
{

Ec{Ebð Þ
kT

( )

where Ec is the energy of the current model, Eb is the energy of the

best model observed so far, k is a constant and T is the

temperature of the system at that point. The temperature is set to

500 initially and adjusted every 10th step to approach an overall

cumulative move acceptance ratio for the trajectory. The target

ratio for move acceptance is 0.5 in the beginning and decreases

linearly to 0.2 at the end.

The evaluation of the Metropolis criterion can lead to three

different results; (1) improved, if the energy of the current model is

better than best the energy, (2) accepted and (3) rejected if energy

of current model is worse than best energy and Metropolis

criterion is used for evaluation. If this step is an ‘‘improved’’ state,

the current model replaces the best model and minimization is

continued with this model. If this step is a ‘‘rejected’’, the

minimization is continued with the best model observed so far. If

this step is an ‘‘accepted’’ state, the minimization is continued on

this model however the best model is not updated. An additional

non-standard state ‘‘skipped’’ is defined if the mutate was not able

to produce a new model, such as when trying to add a new SSE to

a model that is already complete. In that case the energy

evaluation is skipped.

Sampling of Conformational Space
BCL::Fold explores the conformational space using a variety of

moves. Each move is assigned a probability and one of them is

randomly picked at each step based on these probabilities. The list

of all moves utilized, their associated probabilities and descriptions

can be found in Table S1 (assembly stage) and Table S2

(refinement stage). The moves can be divided into the following

six categories; (1) adds, (2) removes, (3) swaps, (4) single SSE

moves, (5) SSE-pair moves, (6) domain moves. For SSE, SSE-pair

and domain moves, these are further categorized into specific a-

helix, mixed-SSE domain, or b-sheet moves.

Loop Building
Missing loop residues were built on to the model predicted by

BCL::Fold using an in-house CCD based loop building protocol

[38]. The protocol first removes a single residue from each side of

all the SSEs in the model to increase the chance of being able to

close the loop. Then, missing loop residues are added to the model

with phi/psi angles biased by Ramachandran distribution for

given amino acid type (Movies in Table S5: row ‘‘Loop grow’’).

The initial conformations of the residues are optimized using BCL

scoring functions including amino acid clash and amino acid

environment and a bias to close the chain breaks. This step ensures

that initial positions can be found for all residues without causing

any clashes. In the next stage, a CCD-based minimization is

applied to ensure all loops are closed (Movies in Table S5: row

‘‘Loop close’’ and ‘‘Loop force close’’).

Composite Knowledge-based Energy Function
The composite energy function is described in detail in the

companion BCL::Score manuscript. Briefly, the energy functions

consists of twelve individual terms for (1) amino acid pair distance

clash, (2) amino acid pair distance, (3) amino acid solvation, (4)

SSE pair clash, (5) SSE pair packing, (6) b-strand pairing, (7) loop

length, (8) strictly enforcing loop closure, (9) radius of gyration, (10)

SSE prediction for JUFO (11) SSE prediction for PSIPRED and

lastly (12) contact order. The scores for amino acid solvation and
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SSE predictions are also computed for the unfolded part of the

protein which evaluates all residues not represented in the model,

using the corresponding potentials. All scoring functions are

implemented within the BCL.

All knowledge based potentials have been derived from a

databank that contained 3,409 high resolution x-ray crystallogra-

phy protein structures compiled using the PISCES server [86].

The collected statistical representations are converted into a free

energy using the inverse Boltzmann relation and applying the

appropriate normalizations. The weights for individual energy

functions were optimized using a benchmark of models composed

of de novo folded models by Rosetta [28], BCL::Fold as well as

perturbed models of native structures generated by perturbation

protocol within BCL. The finalized weights for energy functions

used can be found in Table S3.

Benchmark Analysis
For each BCL::Fold run of 10,000 models for each of the 66

proteins in the benchmark set, an initial filtering is done to remove

any incomplete models, which was less than 3% of the models for

all sets. The models produced by BCL::Fold benchmarks are

evaluated by looking at the following quality measures: root-mean-

square-deviation (RMSD), RMSD100 and CR. These measures

are calculated over Ca atoms of all the residues in a-helices and b-

strands in the models. In addition, contact order [43] values were

calculated by computing the average sequence separation of

contacts defined as having Cb (Ha2 for Glycine) atoms within 8Å

distance. Relative contact order (RCO) values were calculated by

normalizing contact order values by the length of the sequence.

Normalized contact orders (NCOs) were calculated by dividing the

square of the contact order by the length of the sequence. An

additional quality measure was developed, named contact

recovery (CR), which evaluates the percentage of native contacts

with a minimal sequence separation of 12 residues that are

recovered in the models.

BCL::Fold models have variable SSE content, as a pool of

overlapping SSEs is used. These SSEs have variable length and not

each SSE is considered in each model. In result, BCL::Fold models

for one and the same protein have different amino acids present.

Table S4 summarizes the relative coverage of modeled residues in

BCL::Fold SSE-only models. The number of modeled residues is

close to the number of residues in native SSEs for all benchmark

proteins. Due to over-prediction of secondary structure, SSEs that

were filtered from the benchmark proteins can appear in the pool

and consequently in BCL::Fold pool-SSE models. This causes the

pool-coverage to be usually higher than 100%.

The variable SSE content of BCL::Fold models poses a

challenge when comparing these models to the native structure

and also when comparing these models to Rosetta-generated

models. We considered just using residues in SSEs for both,

BCL::Fold and Rosetta. However, using Rosetta secondary

structure definitions puts Rosetta at a disadvantage as in particular

for large proteins with b-strands secondary structure is often

incompletely identified in Rosetta models due to geometric

imperfections. We settled on RMSD100 and contact recovery

calculations for BCL models with only the SSEs that are present in

the BCL models ("incomplete") and usage of "complete" models

for comparison to Rosetta.

Protein Structure Prediction using Rosetta
The Rosetta [28] protein structure prediction program was used

to predict 10,000 models for each of the benchmark proteins in

order to provide a comparison for analysis of BCL::Fold. The

models were produced using the de novo mode of Rosetta, and

fragment files provided as input to Rosetta were pre-filtered to

remove any fragments for homologous proteins. This was done by

using the non-homolog flag of the ‘‘make fragments’’ Rosetta

script. The resulting fragments were searched for proteins selected

in more than 30% of the (overlapping) regions of the query

sequence. These proteins were excluded for up to four iterations of

‘‘make fragments’’. The resulting Rosetta models underwent the

same analysis as the models produced by BCL::Fold. Secondary

structures in Rosetta models were determined using DSSP [73]

and the quality calculations were completed considering Ca atoms

from identified a-helices and b-strands where applicable.

BCL::Fold Availability
All components of BCL::Fold, including scoring, sampling, and

clustering methods are implemented as part of the BioChemical

Library (BCL) that is currently being developed in the Meiler

laboratory (www.meilerlab.org). BCL::Fold is freely available for

academic use along with several other components of the BCL

library. Details on its usage can be found in Appendix S1.
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