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Abstract

Computational small molecule docking into comparative models of proteins is widely used to query protein function and in
the development of small molecule therapeutics. We benchmark ROSETTALIGAND docking into comparative models for nine
proteins built during CASP8 that contain ligands. We supplement the study with 21 additional protein/ligand complexes to
cover a wider space of chemotypes. During a full docking run in 21 of the 30 cases, ROSETTALIGAND successfully found a native-
like binding mode among the top ten scoring binding modes. From the benchmark cases we find that careful template
selection based on ligand occupancy provides the best chance of success while overall sequence identity between template
and target do not appear to improve results. We also find that binding energy normalized by atom number is often less
than 20.4 in native-like binding modes.
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Introduction

Structure based comparative models of proteins in complex with

small molecules advance science by creating hypotheses that can

be tested experimentally. The process of modeling a protein in

complex with a small molecule, often termed small molecule

docking, has a long history stretching back more than 25 years [1].

There are two basic problems in small molecule docking,

searching the space of possible arrangements of the atoms at the

small molecule protein interface (sampling) and evaluating free

energy of the binding pose (scoring). Sampling requires accounting

for both the position of the small molecule relative to the protein as

well as the internal flexibility of the small molecule and the protein.

This easily leads to thousands of degrees of freedom. In order to

detect the correct binding pose the method must accurately rank

the free energy of the correct arrangement relative to alternative

arrangements. Other authors have provided guides to small

molecule docking and evaluation of the current best practices and

software for this purpose [2,3,4,5,6].

Until recently, small molecule docking programs have been

validated mostly on experimental structures available for the

protein rather than models of the protein [7]. However, for the

vast majority of protein sequences no experimental structure is

available. For this reason, we and others turn our attention to

evaluating small molecule docking into models of proteins

[8,9,10,11]. Naively, one would expect comparative models to

perform better than their templates in small molecule docking as

sequence deviations between template and target protein have

been rectified. In particular, recent results from the Critical

Assessment of Structure Prediction Techniques (CASP) indicate

that comparative modeling methods can add information to

models that is not present in templates [12]. However, Kairys et al.

found that docking into the experimental templates performed as

well as docking into the homology models based on templates with

sequence identities ranging from 30% to 90% and heavy atom

RMSDs in the binding site ranging from 1–4 Å [9]. On the other

hand, McGovern and Shoichet found that docking into a set of

comparative models covering ten enzymes from ModBase is more

successful than docking in just the experimental structure of the

protein with no ligand bound (apo) in a virtual screening scenario

[8]. Ferrara and Jacoby found that in a virtual screen for insulin-

like growth factor 1 receptor kinase ligands, homology models

varied in enrichment capacity from random to as good as the

experimental structure of the protein determined by X-ray

crystallography [13].

Although, stunning progress has been made in de novo protein

structure prediction over the past years [14], comparative models

regularly achieve atomic detail accuracy in recent CASP

experiments [14,15,16]. Hence, comparative modeling remains

the method of choice if a template with a structure similar to the

target protein can be identified in the protein data bank (PDB)

[17]. Template-based modeling focuses on modifying the known

structure to reflect the sequence of the protein of interest.

Generally, good quality models result if the sequence identity

between the target and template protein is better than 30% [18].

However, results from the latest CASP experiment indicate that

template detection methods are able to identify suitable templates

with even lower sequence homology [19,20]. Only recently has
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high accuracy refinement of comparative models led to improve-

ments upon the starting models [12]. Comparative models

accurate at atomic detail also open the possibility of obtaining

highly accurate models of protein-small molecule complexes from

comparative models of proteins.

In the following experiments, we establish a baseline for the

performance of ROSETTALIGAND on small molecule docking into

comparative models. Previous work has shown ROSETTALIGAND

performs as well as many other leading docking software in

recognized benchmarks and in comparative studies [5,21,22].

ROSETTALIGAND is a particularly attractive choice for the docking

into comparative models for the following reasons: (1) In contrast

to many alternative programs, ROSETTALIGAND allows docking

with complete protein and ligand flexibility. This is particularly

important when docking into comparative models, as the protein

backbone coordinates stem from the template and are therefore

inherently inaccurate. Adjustments are expected to be necessary

for optimal docking results. (2) Changes between in protein side

chain identity or conformation are expected between template and

target within the binding pocket. ROSETTALIGAND’s rotamer

approach for sampling identity and conformation of these side

chains allows for efficient simultaneous optimization of these

conformations and sampling of ligand conformational space

through ligand rotamers. (3) The Rosetta energy function does

not focus on the protein-ligand interface but rather optimizes the

energy of the entire protein-ligand complex. Therefore, an energy

optimization of the entire target protein in complex with the ligand

is conducted allowing for more accurate ranking of ligands. (4)

ROSETTALIGAND is built into the Rosetta modeling suite which

contains all algorithms necessary for comparative modeling. Thus,

a complete seamless protocol for docking into comparative models

can be constructed and executed minimizing the number of

software tools needed for the user.

We show that ROSETTALIGAND can correctly identify binding

modes in two sets of models. The first test composed of nine

models submitted during the CASP experiment allows us to verify

the method on comparative models built in a blind experiment by

the best comparative modeling techniques available. We also

construct a test set of 21 complexes from seven proteins with

models from at least two different templates. This test set expands

the test to more diverse chemotypes, examines the effect of

template choice, and explores the limits of sampling and scoring

methods used in ROSETTALIGAND.

Results and Discussion

Using two sets of comparative models we show ROSETTALIGAND

is capable of sampling and identifying native-like complexes. In the

first set, models for nine targets from the 8th CASP experiment

which contained organic ligands were used to assess the ability of

ROSETTALIGAND to dock small molecules into comparative models

constructed blindly by a variety of best-practices comparative

modeling protocols. The second set of seven proteins in complex

with three different ligands each expands the chemotype diversity

of ligands and assesses the impact of the choice of the template as

comparative models were constructed from two to five templates

each. Structures of the ligands can be found in Figure S1.

Two factors are critical to the success of a small molecule

docking study. First, the energy function must guide the modeling

method towards native-like complexes. Second, the sampling

methods must allow the method to produce native-like models.

Native-like Binding Modes in the ROSETTALIGAND Energy
Function

To assess the ability of the energy function to discriminate

native-like from non-native binding modes we compare native-like

complexes to the lowest energy non-native conformation. We

minimized native-like complexes from both the comparative

models and the crystal structures and compare to non-native

binding modes found in docking simulations (Table 1 and

Figure 1A). Native-like complexes from relaxed crystal structures

score better than non-native complexes by more than 2 ROSETTA

Energy Units (REUs) in 15 of the 30 cases tested. We use 2 REUs

as a significant cutoff as this value corresponds approximately to

1 kcal or the strength of a weak hydrogen bond or polar

interaction, i.e. the two binding modes differ in at least one such

interaction [21]. In an additional 11 cases the native-like binding

pose scores within 2 REUs of the best non-native binding mode. In

4 cases ROSETTALIGAND scores non-native models significantly

better than the native conformation.

When analyzing the energy function with respect to complexes

derived from comparative models, native-like conformations score

better than non-native binding modes in 11 of 30 cases (Table 1

and Figure 1A) with a greater than 2 REUs. In 14 cases the native

and non-native binding modes score within 2 REUs. A total of 5

cases display non-native binding modes that score more than 2

REUs better than the best native-like model. We conclude that

inaccuracies in the comparative models negatively impact the

ability of the energy function to discriminate native-like from non-

native conformations – the fraction of cases where native-like

models score substantially better than non-native models drops

from K to M. However, the number of cases where non-native

binding modes score significantly better than native-like binding

bodes stays constant at 1/6. While the energy function still

recognizes native-like conformations as favorable in about 85% of

the cases, its ability to discriminate non-native complexes is

reduced.

We conclude the depth of the native binding mode energy well

is obscured by the changes in the protein structure. Consequently

we expect that multiple binding modes of similar energy are

determined when docking into comparative models. Figure 1B

shows a high likelihood of lowest energy structure if the atom

normalized binding energy is less than 20.4 REU/atom and the

separation from the next lowest energy cluster is more than 20.5

REU. An unambiguous identification of the correct binding pose

from the computation alone remains difficult. However, the

docking simulation will still propose a native-like binding pose as

one of the low-energy conformations and can thereby guide the

design of experiments to discriminate between these poses.

Multiple energetic components of the ROSETTALIGAND energy

function are necessary for proper discrimination of native-like

binding modes. Previous analysis of the ROSETTALIGAND energy

function has shown the importance of hydrogen bonding and

solvation energies to the correct identification of native-like

binding modes [21]. In this benchmark the success of the energy

function is not solely based on the van der Waals contributions, i.e.

shape. When considering only the steric contributions 8 of 30

complexes contained native-like binding modes in the top ranked

modes. For the remaining 13 success cases the full energy function

is needed to rank a native like binding mode among the lowest

energy binding modes. Figure S2 in the supplement shows the

remodeling of the energy function for 1NJE which requires the full

energy function in order to observe the native binding mode

funnel.

The failure of the ROSETTALIGAND energy function to unam-

biguously identify the native binding mode as the lowest energy

ROSETTALIGAND: Docking to Comparative Models
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binding mode in all cases is troublesome. This is likely due to

inaccuracies in solvation energy. The solvation energy is an

empirically derived energy function which has required manual

correction when used in to design protein surfaces [23]. Thus by

opening new minima up to sampling by increase the structure

space sample in the comparative models it is not surprising that

one would find artificially lower minima. Another point to

consider is that the crystallization conditions include cofactors

and impose crystal contacts that are not included in the docking

calculation. So while these coordinates represent the best estimate

of lowest energy conformation one should bear in mind that the

energy landscape of the crystallized complex may not match the

modeled conditions.

ROSETTALIGAND Samples Native-like Conformations at the
Protein-Ligand Interface

Having looked at the energy functions ability to discriminate

native-like binding poses we now turn our attention to the

sampling problem. The first concern is whether ROSETTA samples

native-like conformations in a standard docking run. Briefly:

models from 4000 independent docking simulations were filtered

by energy, and submitted to clustering (see Methods). Root mean

squared deviation of ligand atoms (L-RMSD), interface atoms (I-

RMSD) and energy were analyzed for the lowest scoring model in

each cluster. Indeed ROSETTALIGAND samples native-like confor-

mations (L-RMSD,2 Å) in all cases (Table 1). In the worst case

(3D8B) conformations with L-RMSD,2 Å were sampled but are

included in a cluster with a slightly higher L-RMSD of 2.14 Å.

The lowest RMSD is listed in Table 1 for 3D8B.

Furthermore sampling in a ROSETTALIGAND docking run is

dense enough that the sampled native-like complexes fall into

native energy well. For 11 of 30 cases the best energy model had a

native-like binding mode with binding energy funnels like those

seen in Figure 2A; 5 of these scored at least 2 REU or ,1 kcal

better than the best non-native model. A further 10 cases saw one

of the top 10 best energy cluster contain a native-like binding-

mode and binding energy funnels like that in Figure 2B; 8 of these

scored within 2 REU of the best non-native model. In 9 cases the

native-like conformations does not score as one of the top 10

choices by energy.

A lower success rate is seen if models from multiple templates

are not pooled (see Tables S1, S2, S3, S4, S5, S6, and S7). On a by

template basis 16 of 69 or 23% of the cases the best energy model

was in a native-like binding mode, while 36 of 69 or 52% had

native-like binding modes among the ten best energy clusters. We

conclude that whenever possible, docking should be performed

into comparative models based on multiple templates.

Examining the Top Ranked Binding Mode Indicates
Needed Improvements in Interface Refinement, Ligand
Conformations, and Modeling of Cofactors

Encouragingly, in 11 of 30 cases the lowest energy binding

mode from a docking run is the correct solution as is seen in

Figure 3A for the target 1O3P. However, for 12 cases the top

ranked binding mode shows deviations in translation and/or

rotation similar to those seen for 2FAI and 1B8O (Figures 2B and

2C). This along with the noted decrease in native energy well

depth indicates improvements are needed in the interface

refinement process. This point is further illustrated in Figure 1A

when plotting the difference between the depth of native energy

well in the comparative models against the native energy well in

the crystal structure. In this case we see a number of cases where

the native energy well is much deeper but was not sampled in the

comparative models (dashes and triangles with large Enativemodel-

Enative crystal structure with small Enative sampled-EBest Non-native). In

these cases the energy function shows that ability to discriminate

the native binding mode, but the docking protocol fails to sample

the full depth of the native energy well given the constraints of the

comparative model. In 5 cases the rank 1 binding mode maintains

many of the correct interactions, but adopts a non-native

conformation for the ligand as is seen in Figure 3D for 1FCZ.

Further improvements in ligand conformational sampling or the

energetics of ligand conformations may decrease these errors

[22,24]. However, improvements in the accuracy of the protein

Figure 1. Native binding mode minima in ROSETTALIGAND energy function. a) Energy function performance degrades in comparative models.
The x-axis shows the relative depth of the native binding mode energy minima to the best score non-native binding mode found during docking. The
y-axis plots the relative depth of the native binding mode in comparative models to the best scoring non-native model from docking. As expected
the depth of the native binding mode energy wells decreases in comparative models. However native binding modes do not appear to score worse
than non-native binding mode. b) Atom normalized binding energy and D Energy of the two best scoring clusters indicates the quality of docking
results. A binding mode with an atom normalized binding energy of ,20.4 and a separation of ,20.5 REU is likely to be native-like. Circle native
binding mode rank = 1, Triangle 1,native binding mode rank ,21, Dash native binding mode rank .20.
doi:10.1371/journal.pone.0050769.g001
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side chain and backbone placement will also be necessary as can

be seen from the degradation of the energy well depth when

comparing for crystal structures to comparative models (see

Table 1). In two cases (1SQA and 1B8O) the crystallized structure

contained cofactors in the binding site which overlap with rank 1

binding mode (see Figure 3C of 1B8O). Modeling the structures

with these cofactors present might change the ranking of the

binding modes, in fact other docking programs such as MOE

already include this ability [25].

Comparing the best scoring native and non native binding

modes shows well formed hydrogen bonds helps the discrimination

of deep native energy wells. Figure 4A depicts 1NJE with the

difference in scoring between the native and non-native binding

modes of 24. The native-like binding mode shows multiple well

formed hydrogen bonds. Figure 4B shows the overlay of 1VFN

best native-like and non-native models which are of similar

energies. The non-native binding mode forms 2 hydrogen bonds

as opposed to 3 in the native binding mode however the non-

native mode is able to compensate with better interactions in the

other categories. Well formed hydrogen bonds assist in the

discrimination of native like binding modes. However incorrect

backbone placement like that seen in Figure 4C for 1FD0 can

dramatically alter the energy landscape and create false minima

that appear deeper than native-like binding modes. In the 1FD0

case the chance for the non-native binding mode to form incorrect

hydrogen bonds obscures the true native structure. It should be

Table 1. Minimum I-RMSD and L-RMSD of native-like binding modes.

Target
PDB

# of
rotatable
bonds and
# of atoms Native Energy I-RMSD Best Non Native Docking Model Best Native-like Docking Model

Cry. Str. Model Min. Ave. Energy Rank L-RMSD Error Energy Rank L-RMSD I-RMSD

3D8B 6 43 217.31 214.94 0.74 1.28 215.00 1 8.06 T 5.0 Å R 29.62 263 1.57 2.09

3DLZ 10 37 217.46 217.62 2.96 7.78 213.78 4 6.21 217.62 1 1.46 26.38

3DA0 7 19 214.16 215.00 0.34 1.56 217.88 1 2.84 T 1.5 Å R 213.51 35 1.84 2.66

3DA1 27 87 228.65 233.72 0.69 1.43 224.59 2 14.52 231.37 1 0.52 1.63

3DKP 16 43 212.3 213.73 0.76 1.49 216.09 1 8.59 T 6.0 Å R 210.73 56 1.30 1.63

3DLS 16 43 212.13 212.80 1.32 2.18 213.92 2 4.95 214.22 1 1.95 2.02

3DLC 11 51 230.06 224.83 0.90 4.05 222.33 1 3.27 W 220.58 3 1.40 2.71

3DME 27 87 240.93 229.51 2.43 3.20 223.81 1 2.61 W 221.54 4 1.04 3.4

3DOU 11 51 227.92 224.27 0.43 1.86 217.87 3 2.66 219.88 1 0.79 2.64

1Y1M 1 21 213.72 213.66 1.43 2.53 29.68 14 2.87 213.66 1 0.67 1.49

1PB9 0 14 211.86 29.93 1.09 2.20 28.51 1 2.88 T 3.0 Å R 27.91 3 0.86 2.65

1PBQ 3 21 215.07 215.78 1.82 2.50 217.57 1 4.17 T 2.0 Å R 215.78 8 1.83 3.48

2QWB 15 40 210.04 214.77 1.33 2.36 211.78 1 4.22 I 211.58 3 1.51 2.52

2QWD 11 39 214.95 214.32 1.31 2.30 213.56 1 3.44 T 1.0 Å R 212.99 2 1.46 1.72

2QWE 13 44 215.17 217.80 1.24 2.22 213.41 1 6.19 T 0.5 Å R 29.93 38 1.41 1.47

1FD0 5 57 229.62 217.97 2.54 3.41 221.27 1 4.45 T 3.0 Å R 217.52 16 1.38 3.21

1FCX 5 57 226.15 218.13 2.56 3.39 220.57 1 5.98 T 5.0 Å 218.13 10 1.28 3.27

1FCZ 4 53 226.14 217.73 2.54 3.38 220.86 1 3.19 W 216.62 26 1.60 3.04

1VFN 0 14 211.53 211.87 2.39 3.01 211.87 1 6.95 T 5.0 Å 211.87 1 1.10 2.39

1B8O 6 35 216.18 214.73 2.39 3.26 215.58 1 4.6 T 3.0 Å C 214.56 3 1.20 2.07

1V48 6 35 219.30 219.20 1.64 2.38 215.21 3 3.43 216.67 1 1.76 1.78

2FAI 6 43 215.38 214.21 2.12 3.68 214.08 1 4.08 T 3.0 Å R 212.83 19 1.37 2.12

2AYR 10 69 223.20 219.12 2.68 4.33 221.07 1 8.29 IW 217.26 58 1.81 2.74

2B1V 6 40 214.83 213.43 1.97 3.58 214.88 1 3.31 T 2.0 Å R 213.27 4 1.90 2.35

1NJA 6 33 214.48 214.5 1.75 3.08 213.33 2 6.94 214.50 1 0.66 3.52

1NJE 6 33 214.90 216.25 1.82 3.03 212.32 3 6.01 216.25 1 1.66 2.35

1TSY 6 32 216.62 213.81 1.67 3.26 211.81 1 6.35 T 5.0 Å R 27.89 77 1.91 2.11

1O3P 6 47 215.88 219.24 1.70 2.45 217.93 2 4.84 219.24 1 0.88 1.97

1F5K 1 19 210.74 211.11 1.62 2.23 210.18 2 5.59 211.11 1 0.54 1.62

1SQA 6 55 219.01 219.50 2.51 3.09 219.69 1 2.68 WC 217.16 5 1.66 2.84

I-RMSD is calculated over all heavy atoms within 5 Å of the small molecule in X-ray crystal structure. L-RMSD is calculated over heavy atoms in the small molecule.
Cluster Rank is the rank order of the cluster from lowest binding energy to highest binding energy. Error describes the spatial orientation to the native binding mode if
the rank 1 cluster is non-native. I = inverted binding mode, W = wrong conformation of ligand, T = Translation in Å, R = Rotation, C = Cofactors present in native which
may influence binding mode. Lines in bold indicate lowest energy binding mode is native-like. Lines in italics indicate binding mode in top 10 lowest energy modes is
native like. The chemical structures can be found in Figure S1.
doi:10.1371/journal.pone.0050769.t001
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noted at this point that the coordinates for the native binding

mode are taken from experimental structures determined with X-

ray crystallography. As such, the coordinates should be regarded

as models reflecting the particular chemical environment in which

the protein complex was crystallized. Thus it is possible that the

minima sampled here could reflect a low energy structure in the

modeled conditions.

Careful Template Selection Improves Docking
ROSETTALIGAND has a higher success rate docking to models

built from holo templates as opposed to apo structures.

ROSETTALIGAND succeeded in ,70% of cases with templates that

contain a ligand with a similar chemotype to the target ligand, in

,50% of cases with templates with a non-similar ligand bound,

and in ,20% with templates lacking ligands). Figure 5 plots

sequence identity and binding site sequence identity over template

bind site occupancy. The symbols represent rank of the native-like

binding mode or relative depth of the native energy minimum

compared to the lowest energy non native binding mode. Success

cases correlate better with ligand occupancy in the template than

either sequence identity measure. Figure 6 superimposes target

and template structures. Ligands in the template binding sites

decrease the probability of backbone deviations occluding the

native binding mode as is seen for 1SQA on 1YBW in Figure 6A.

Figure 2. Plotting L-RMSD versus ROSETTALIGAND binding energy displays the shape of energy wells. For target 3DOU a) the comparative
model displays the global energy minimum in the same location and depth as the native binding mode. However this is not the case for all proteins
as is shown in the plot for target 1SQA b). Here the energy minimum in ROSETTALIGAND is wider, less well defined, and slightly offset between target and
comparative model. Plots for all 30 targets can be found in the Figure S3. With the exception of 1SQA, 1FD0, 1FCX, 1FCZ, and 3DLS each of the other
25 targets show overlap between minima for the native binding mode minimized in the native PDB structure and the native binding mode
minimized in the comparative models while L-RMSD values under 2 Å. This indicates that the scoring function generally recognizes native-like
binding modes at least as local energy minimum and in 11 cases as global minimum.
doi:10.1371/journal.pone.0050769.g002

Figure 3. Examining low binding energy binding modes (green) in comparison to the target structure (grey) suggests avenues for
improvements in ligand docking. For 10 of the 30 ligand the rank 1 ligand is a native-like binding mode as for a) target 1O3P. For 12 of the
remaining cases the rank 1 binding mode is rotated and/or translated compared to the native binding mode as is seen for b) target 2FAI and c) target
1B8O. Two targets (1SQA and 1B8O) contain cofactors in the target crystal structure which overlap with the rank 1 binding mode. Panel c) shows a
phosphate ion in the target crystal structure that was omitted in ligand docking. The rank 1 binding mode occupies the space of the phosphate ion.
Docking results can be improved by including cofactors in the simulation. For the 6 remaining targets the rank 1 binding mode maintains many of
the correct contacts but adopts a non-native conformation as seen in d) for target 1FCZ.
doi:10.1371/journal.pone.0050769.g003
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Templates with analogs in the binding site help pre-form the

binding pocket, thus increasing the probability of finding native-

like binding modes. Figure 6B shows almost perfect agreement

between the binding mode in the target 1PB9 and for the ligand

found in template 2RC7. However, target 2B1V on template

1QKN (Figure 6C) and target 2QWE on template 1INF

(Figure 6D) show that not all functional groups transfer directly

between complexes.

Heuristics for Template Selection
Sequence identity of templates does not correlate with docking

success. For the 21 small molecules docked into ROSETTA

generated models, neither the overall sequence identities nor the

sequence identities in the binding site serve as a good predictor of

success. This point is illustrated in Figure 5 through the lack of

correlation between successful cases and sequence identity

measures. At some level sequence must determine structure.

Hence finer measures of sequence similarity might prove useful for

example conservation of polar residues in binding pockets.

Docking into multiple templates can improve results. In 4 of 7

ligand families, docking into a comparative model based on a

single template is sufficient for success (see Tables S1, S2, S3, S4,

S5, S6, and S7). However a second template is needed to identify

the binding mode of all three small molecules for the Neuramidase

complexes (2QWE, 2QWD, 2QWB). Fan et al. also noted that

multiple models improved results in the context of virtual

screening [11].

Given that templates perform differently and that it is not

always possible to use all available templates, a template selection

heuristics would be useful. The results in this benchmark indicate

that templates with sequence identities as low as 30% perform as

well as or better than templates of 60%. We grouped all

simulations by whether sequence similarity of template and target

is below or above 50% to confirm that results are not significantly

dependent on that measure. Comparing L-RMSD values we find

a non-significant difference of 4.0 Å versus 3.6 Å (p-val-

ue = 0.350). Energy minimum depth also gives a non-significant

difference of only 0.18 energy units (p-value = 0.394). Additionally,

sequence identity in the binding site does not correlate with

success.

One noticeable trend is that holo structures performed better

than apo structures, particularly holo structures containing ligands

similar to the target ligands. Templates containing ligands with

function groups similar to the target ligand should be given

preference. To test the statistical significance of the finding that

docking performance depends on occupancy and type of ligand in

the template, we grouped all simulations into two classes. We

combined partial analogs, analogs, and identical ligands into one

group. Templates with no or unrelated ligands were combined

into a second. We find average L-RMSD values to be 3.7 Å versus

4.8 Å which is a significant difference with a p-value of 0.030.

Comparing the relative depth of the native energy minimum to the

lowest energy minimum of a non-native binding mode for the

same group, the separation is larger by an average of 1.64 energy

units when templates with similar ligands are used (p-val-

ue = 0.006). For the greatest gain, any chemical analogs found in

the templates should be used to guide the modeling process – a

finding that confirms previous research by Brylinski and Skolnick

[26].

Concluding Remarks
Modeling of small molecule protein binding sites is difficult.

Davis et al. recently found that ROSETTALIGAND and other

prominent docking software failed to generate a native-like

binding mode on at least one protein 70% of the time [5]. Thus

docking to comparative models may seem like a fool’s errand due

the lack of accuracy in comparative models. However, improve-

ments in comparative modeling techniques have increased the

quality of comparative models [16,27,28]. Indeed in some cases

the comparative models have sub-angstrom accuracy at the

protein small molecule interface. The fact that, in this study, the

native binding mode is sampled in all 30 cases is encouraging.

Furthermore, ROSETTALIGAND ranks the native-like binding modes

from docking runs in the top 10 binding modes for 21 of 30 cases.

The progressive degradation of the apparent native well energy

well depth from crystal structures to comparative models indicate

that docking to comparative models in ROSETTA would benefit

from improvements in sampling. That the docking runs into

comparative models did not reach same depth of the native energy

well as found during constrained minimization of the native

binding mode indicates that some improvements could be gained

from further refinement during the docking protocol.

We find that ROSETTALIGAND is at least on par with alternative

approaches. For example, Q-Dock reports median RMSD values

of 4.4–6.0 Å for docking in comparative models of increasing

difficulty [29]. ROSETTALIGAND achieves 3.6–5.5 Å. The overall

success rate of 70% is also comparable to reported values

[11,29,30], however, comparison is complicated as benchmarks

and quality measures change. A recent comparative benchmark

documents that different methods have orthogonal strengths and

weaknesses [31] so that application of multiple docking programs

remains the recommended strategy for optimal results.

The experiments described here-in point to three improvements

that could be made in sampling. First, ligands in templates could

Figure 4. Comparison of best native and non-native binding modes. Native binding modes are green with red-dashed hydrogen bonds.
Non-native binding modes are cyan with yellow-dashed hydrogen bonds. a) 1NJE Energy for the formation of hydrogen bonds discriminates the
native binding mode from the best non-native binding mode. b) 1VFN Formation of hydrogen bonds is not sufficient in all cases to distinguish the
native binding mode from non-native modes c) 1FD0 non-native binding modes may have deeper energy wells when forming hydrogen bonds with
surface residues.
doi:10.1371/journal.pone.0050769.g004
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be used to guide placement of functional groups. This could be

accomplished by either using the ligand placements in templates as

starting positions in a small perturbation Monte Carlo minimiza-

tion protocol or by implementing constraints during the docking

simulation. Second, cofactors could be included in the docking

process. At present, due to limitations in the code, cofactors would

remain fixed in place while docking occurs; an iterative cycle could

be employed to serial dock both ligands and cofactors. Upcoming

changes to ROSETTALIGAND will allow simultaneous docking of

multiple ligands. Third, the homology modeling process could be

altered to include ligands. Specifically, ligands found in templates

could be retained in the structures during loop modeling and

structure refinement as has been discussed by McCammon and

others [30,32]. This may result in more accurate comparative

models and thus allow ROSETTALIGAND to sample closer to the

native binding mode.

Improvement of the scoring function is more complex. One

glaring deficiency is the lack of a ligand internal energy. The

internal energy of the ligand may prove particularly important for

refinement of small molecule protein complexes. Examination of

solvation and charge effects have also been observed to present

problems for small molecule complexes [33]. Finally, using a

dataset similar to this one could be used to train an artificial neural

network or support vector machine classifier to pick native-like

binding modes in a manner similar to that employed by NNScore,

RF-Score, and FunHunt [34,35,36].

ROSETTALIGAND can sample and identify native-like binding

modes when docking to comparative models. Careful selection of

templates and integration of biochemical data will increase the

accuracy of the predicted interface. However, the native-like

binding mode will be one of as many as 20 binding modes.

Biochemical information will be required to prioritize the binding

Figure 5. Presence of a ligand with a similar chemotype in template is more indicative of docking success than sequence identity.
The figure displays docking success dependent on ligand occupation in template (x-axis) and binding site sequence identity (y-axis) in panels a) and
b) and overall sequence identity in panels c) and d). Panels a) and c) classify success by energy difference (delta) between the top scoring native-like
and best non-native binding mode: Circle delta ,22, Triangle 22,delta ,2, Dash delta .2. Panels b) and d) determine success by rank of the best
scoring native-like binding mode: Circle rank = 1, Triangle rank , = 20, Dash rank .20.
doi:10.1371/journal.pone.0050769.g005
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modes found by ROSETTALIGAND. Once a candidate binding mode

is selected it should be carefully characterized using a series of

mutations. The results of mutagenesis experiments and other

biochemical experiments should then be integrated in the models.

Methods

The focus of this work was to assess the ability of ROSETTALI-

GAND to identify the binding mode of small molecules using

comparative models. Two sources were chosen for the compar-

ative models. The first set of comparative models was taken from

the CASP experiment. The second source of models was prepared

for a subset of systems in the PDBBind, a database of small

molecule-protein structures with associated binding energies.

Tutorials for using Rosetta to build comparative models and also

to dock small molecules have been published previously [37] and

are available at the following web address http://www.meilerlab.

org/index.php/jobs/resources.

Preparation of CASP models
The models for the nine CASP targets containing organic

ligands were downloaded from the CASP website (http://www.

predictioncenter.org along with the corresponding crystal struc-

tures from the Protein Databank [38,39] (www.rcsb.org). The top

model submitted by each group was selected. Each model was

structurally aligned to the crystal structure. First, a global

alignment was performed using the PyMOL align command.

This was followed by aligning all residues within 8 Å of the ligand.

The ligand in the crystal structures was then transferred to the

models. The procedure results in an optimally placed ligand and

represents a theoretical limit for the quality models.

Building of Comparative Models
Building of comparative models requires the selection of a

structural template, alignment of the sequence onto the structural

template, followed by any refinement necessary to account for

changes in the structure from the new sequence. In this study,

potential structural templates were identified using a blast search

of sequences in the PDB. At least one template was chosen for

each 10% sequence identity bin ranging from 30%–80%, if

available. The templates selected for each target may be found in

Tables S1, S2, S3, S4, S5, S6, and S7. A multiple sequence

alignment for the selected templates was constructed using the

MUSTANG structural alignment program [40]. The sequence

alignment used to construct the comparative model was then

created using ClustalW’s sequence to profile alignment options

[41]. The sequence alignment was then mapped onto the template

structures.

Any gaps or insertions were remodeled using the kinematic loop

closure protocol in ROSETTA. Commands for the loop_model

application are included in the supplemental file Methods S1. The

kinematic loop closure protocol has been previously described

[42]. Briefly, each loop is chosen in a random order in a

Metropolis Monte Carlo protocol. Six dihedral angle torsions are

chosen from the residues in the loop. The remaining torsions are

randomly sampled from Ramachandran probabilities of each

amino-acid. The six torsions are solved analytically. The kinematic

loop closure protocol is run several hundred times over varying

sections of the loop with the new conformation of the loop being

accepted when it fulfills the Metropolis criteria. Once each of the

loops has been built, a minimization of the protein structure is

performed by iteratively performing Metropolis Monte Carlo

repacking of the side chain conformations of the protein, followed

by gradient minimization.

After building approximately 4000 models using the loop_-

model protocol, all models within 50 REU of the lowest energy

Figure 6. Backbone conformational differences between template and target can preclude successful docking. a) Super-imposition of
1SQA (target, green) on 1YBW (template, grey). The template has no ligand bound. Part of the template’s backbone occludes the binding site. Major
backbone conformational changes are needed to open the binding pocket. Selection of template with ligands similar to the target ligand pre-forms
the binding site providing conserved binding motifs as seen for b) 1PB9 (target, green) on 2RC7 (template, grey), c) 2B1V (target, green) on 1QKN
(template, grey), and d) 2QWE (target, green) on 1INF (template, grey). Note that the ligand analog often makes different contacts as in seen in both
c) in which the phenyl group points to a different part of the pocket in the template as opposed to the target and d) in which the guanidinium head
group occupies a different pocket in the binding site.
doi:10.1371/journal.pone.0050769.g006
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models were selected for clustering. The Bio3D R package was

used to align and calculate the RMSD matrix between the

structures [43]. The k-means clustering algorithm in R was used to

find clusters of approximately 25 members. This clustering

approach is meant to pick a maximally diverse subset of the

structures for docking.

The interface RMSD (I-RMSD) computed over non hydrogen

protein atoms within 5 Å of a ligand atom in the native binding

mode. The red atoms in Figure 7 give a visual representation area

covered by the I-RMSD measure.

Docking to Models
The ligand_dock application was used to dock the ligands into

the protein structures. Commands for the ligand_dock, and

extract_atomtree_diff application can be found in the supplemen-

tal file Methods S1. The docking protocol has been described in

detail previously [22]. Ligand conformations are pre-computed for

maximum rotational diversity within energetically allowed con-

formations. The internal ligand energy is not explicitly included in

the binding energy. As only low energy conformations of the

ligand are sampled, the ligand internal energy is assumed to be low

and constant. Inclusion of the (small) energetic differences between

ligand conformations in the binding energy calculation is a

possible avenue of improvement for ROSETTALIGAND. The

protocol begins by randomly placing the ligand center of mass

in a 10 Å sphere. The green sphere in Figure 7 displays the

translational space covered in the docking protocol.

For the cases in the benchmark the binding site is assumed to be

known. For many docking studies biological information will be

available to approximate the binding pocket. In cases where the

binding pocket is unknown software tools exists for the compu-

tational prediction of binding pockets [44,45,46].

The protocol selects 1 from up to 1000 different orientations

and conformations based on shape complementarities in a low

resolution van der Waals grid. The side chains and ligand in the

binding site then undergo six rounds of Metropolis Monte Carlo

optimization of side chain and ligand conformations. Finally, a

gradient minimization yields the structure of the complex. This

protocol is repeated to generate 1000 models. The models were

then ordered by the interface delta score. The interface delta score

is the total energy of the complex with the ligand bound minus the

total energy of the complex with the ligand separated from the

binding site (i.e. 500 Å from the protein).

Identifying Binding Modes
In docking studies with non-native models, the discriminatory

power of the ROSETTA docking energy function is decreased

[47,48]. The global minimum of the native energy funnel may be

inaccessible because of limited sampling in either the protein or

the ligand. As a result, local minima cannot be distinguished from

the global minimum based on the ROSETTALIGAND energy function

alone. Here, we use a clustering approach to identify the binding

modes and then rank the binding modes by interface delta score.

Clustering allows one to avoid considering models that contain the

same binding mode.

Select best 5% of models by lowest binding energy. Compute

the RMSD between the ligand heavy atoms for all pairs of models.

Cluster the matrix of RMSDs in R [49] using complete linkage

with a height of 3.00 RMSD. All clusters at this height are used

regardless of the number of models in each cluster. The docking

energy landscape is very rough. Consequently, the native binding

mode may rarely be sampled. Thus, penalizing small clusters is

counter-productive. Following hierarchical clustering in R, rank

clusters by the energy of the best energy model in the cluster.

Supporting Information

Figure S1 The 2D chemical structures of the ligands
docked in this benchmark show some bias towards
nucleic acids. The ligands cover a range of flexibilities from

completely rigid molecules to highly flexible molecules. Rosetta-

Ligand performs better on small rigid molecules or molecules with

a core fragments. Each chemical structure is label with the parent

pdb code.

(TIF)

Figure S2 The steric interactions do not fully account
for the successes presented in the study. We find that the

full energy function performs better than considering just the steric

components of energy function. The full energy function results in

17 successes versus just 8 when considering only the steric

components.Here we compare the sum of the int_fa_atr and

int_fa_rep components to the full binding energy of the complex.

The red squares depict the best models as scored by the steric

contributions. The blue diamonds show the best models as chosen

by the full binding energy function. The full energy function scores

native like models better than non-native models where as in the

steric models no such preference is discernible.

(TIF)

Figure S3 L-RMSD energy plots of complexes docked
into multiple comparative models. Blue stars display

docking clusters, green crosses show top models from docking

into the target structure. Red crosses show models produce by

Monte Carlo minimization of native-like binding modes in the

comparative models. Changes structure in comparative model vs a

crystal structure alter the accessible energy landscape for

RosettaLigand docking protocol. The rmsd vs energy plots for

each of the test case below show the extent of the distortion in the

energy landscape. Ideally cases look like the 1Y1M case were the

lowest energy red, blue, and green overlap in the 0–2 Å RMSD

area. Cases like 1FD0 show that if the protein structure is close to

the crystal structure the algorithm scores native-like binding modes

best, but that the comparative models occupy a different

conformational space which favors a non-native binding mode.

Finally some cases such as 1PBQ are concerning as non-native

binding modes appear to score better than even native binding

modes in the native crystal structure environment.

(TIF)

Figure 7. Protein small molecule interface. ROSETTALIGAND samples
complexes by randomly translating, randomly rotating, and picking a
random conformation for ligand inside the green sphere. The magenta
color atoms are the protein atoms included in the interface RMSD (I-
RMSD) calculation.
doi:10.1371/journal.pone.0050769.g007
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Methods S1 Supplemental information for methods
section including description of comparative model
preparation, Rosetta commands for loop building, and
Rosetta commands for ligand docking.
(DOCX)

Table S1 N-methyl-D-Aspartate Receptor 1 ligand dock-
ing broken down by template. I-RMSD is calculated over all

heavy atoms within 5 Å of the small molecule in X-ray crystal

structure. L-RMSD are calculated over heavy atoms in the small

molecule. Cluster Rank is the rank order of the cluster from lowest

binding energy to highest binding energy. I = Template contains

identical ligand, A = Template contains analogous ligand, PA = -

Template contains partial analog, L = Template contains a ligand,

‘‘-’’ = Template does not contain a ligand.

(DOCX)

Table S2 Neuramidase. ligand docking broken down by

template. I-RMSD is calculated over all heavy atoms within 5 Å of

the small molecule in X-ray crystal structure. L-RMSD are

calculated over heavy atoms in the small molecule. Cluster Rank is

the rank order of the cluster from lowest binding energy to highest

binding energy. I = Template contains identical ligand, A = Tem-

plate contains analogous ligand, PA = Template contains partial

analog, L = Template contains a ligand, ‘‘-’’ = Template does not

contain a ligand.

(DOCX)

Table S3 Retanoic acid Receptor Gamma ligand dock-
ing broken down by template. I-RMSD is calculated over all

heavy atoms within 5 Å of the small molecule in X-ray crystal

structure. L-RMSD are calculated over heavy atoms in the small

molecule. Cluster Rank is the rank order of the cluster from lowest

binding energy to highest binding energy. I = Template contains

identical ligand, A = Template contains analogous ligand, PA = -

Template contains partial analog, L = Template contains a ligand,

‘‘-’’ = Template does not contain a ligand.

(DOCX)

Table S4 Purine Nucleoside Phosphorylase ligand dock-
ing broken down by template. I-RMSD is calculated over all

heavy atoms within 5 Å of the small molecule in X-ray crystal

structure. L-RMSD are calculated over heavy atoms in the small

molecule. Cluster Rank is the rank order of the cluster from lowest

binding energy to highest binding energy. I = Template contains

identical ligand, A = Template contains analogous ligand, PA = -

Template contains partial analog, L = Template contains a ligand,

‘‘-’’ = Template does not contain a ligand.

(DOCX)

Table S5 Estrogen Receptor ligand docking broken
down by template. I-RMSD is calculated over all heavy atoms

within 5 Å of the small molecule in X-ray crystal structure. L-

RMSD are calculated over heavy atoms in the small molecule.

Cluster Rank is the rank order of the cluster from lowest binding

energy to highest binding energy. I = Template contains identical

ligand, A = Template contains analogous ligand, PA = Template

contains partial analog, L = Template contains a ligand, ‘‘-

’’ = Template does not contain a ligand.

(DOCX)

Table S6 Thymidylate Synthase ligand docking broken
down by template. I-RMSD is calculated over all heavy atoms

within 5 Å of the small molecule in X-ray crystal structure. L-

RMSD are calculated over heavy atoms in the small molecule.

Cluster Rank is the rank order of the cluster from lowest binding

energy to highest binding energy. I = Template contains identical

ligand, A = Template contains analogous ligand, PA = Template

contains partial analog, L = Template contains a ligand, ‘‘-

’’ = Template does not contain a ligand.

(DOCX)

Table S7 Uridine Kinase Type Plasminogen Activator
Ligand Docking broken down by template. I-RMSD is

calculated over all heavy atoms within 5 Å of the small molecule in

X-ray crystal structure. L-RMSD are calculated over heavy atoms

in the small molecule. Cluster Rank is the rank order of the cluster

from lowest binding energy to highest binding energy. I = Tem-

plate contains identical ligand, A = Template contains analogous

ligand, PA = Template contains partial analog, L = Template

contains a ligand, ‘‘-’’ = Template does not contain a ligand.

(DOCX)
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