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SUMMARY

Membrane protein structure determination remains a
challenging endeavor. Computational methods that
predict membrane protein structure from sequence
can potentially aid structure determination for such
difficult target proteins. The de novoprotein structure
prediction method BCL::Fold rapidly assembles sec-
ondary structure elements into three-dimensional
models. Here, we describe modifications to the algo-
rithm, named BCL::MP-Fold, in order to simulate
membrane protein folding. Models are built into a
static membrane object and are evaluated using a
knowledge-based energy potential, which has been
modified to account for the membrane environment.
Additionally, a symmetry folding mode allows for
the prediction of obligate homomultimers, a common
property amongmembrane proteins. In a benchmark
test of 40 proteins of known structure, the method
sampled the correct topology in 34 cases. This dem-
onstrates that the algorithm can accurately predict
protein topology without the need for large multiple
sequence alignments, homologous template struc-
tures, or experimental restraints.

INTRODUCTION

Membrane proteins (MPs) constitute more than one-quarter of

the human genome (Fagerberg et al., 2010) and more than

one-half of all known drug targets (Bakheet and Doig, 2009).

However, less than 2% of structures present in the Protein

Data Bank (PDB) are MPs, meaning that a large number of

MP folds have not yet been characterized (Oberai et al., 2006).

Presently, about 100 helical multispan integral MP folds have

been determined—about 1,200 are expected to exist based on

analysis of sequence databases (Hopf et al., 2012). This wide

disparity between MP biological relevance and available struc-

tural information is in large part due to the specialized biophysi-

cal properties that make MPs difficult to express, purify, and

study by X-ray crystallography or NMR spectroscopy. Computa-

tional techniques can often provide structural insight when

experimental data are lacking; however, the majority of the effort

in this field has been focused on soluble proteins.

There are several successful algorithms for predicting MP

transmembrane (TM) spans (Fagerberg et al., 2010), yet predict-

ing MP three-dimensional structure remains difficult. One con-
Struc
sequence of the low number of MP folds with known structure

is that for a larger fraction of MP targets, template-based

modeling is not an option. There are a few de novo methods

that have been successful in predicting structures for small

(<150 residues) MPs, one example of which is Rosetta-

Membrane (Yarov-Yarovoy et al., 2006). However, many larger

and more complex MPs, such as G protein-coupled receptors,

are important both biologically and pharmaceutically, yet remain

challenging targets for these methods.

One important caveat is that the accuracy of prediction

methods can improve drastically with the incorporation of re-

straints (Barth et al., 2009). The restraints can be experimental,

such as NMR chemical shifts, residual dipolar couplings, and

distance restraints (Sanders and Sönnichsen, 2006). Addition-

ally, recent work has demonstrated the power of predicted con-

tact restraints generated from sequence analysis with the accu-

rate prediction of MPs with up to 14 TM segments (Hopf et al.,

2012; Nugent and Jones, 2012b). Obtaining experimental data

or a large number of homologous sequences cannot be guaran-

teed for any given target; therefore, improved algorithms for de

novo MP structure prediction would be beneficial for the field.

De novo protein structure prediction methods can be broken

down into two components: sampling and scoring. During the

sampling phase, the protein model is perturbed in somemanner.

The protein model is then scored, using a scoring function

designed to identify native-like topologies. The bottleneck of

de novo protein structure prediction is sampling the large confor-

mational space densely enough so that one model approaches

the native conformation to about 2 Å RMSD100 (root-mean-

square deviation normalized to a protein length of 100 residues)

(Carugo and Pongor, 2001). At this accuracy, an all-atom energy

function can usually distinguish the native-like conformation

from alternatives (Bradley et al., 2005). However, without restrict-

ing the conformational space through experimental restraints,

such sampling densities can only be achieved for very small pro-

teins (<80 residues). Therefore, progress in de novoMP structure

prediction accuracy is likely to arise from an increase in sampling

efficiency. Rosetta uses a fragment assembly approach to

replace stretches of three or nine residues with conformations

determined from sequence similarity to known structures

(Simons et al., 1997). Although this method samples local con-

tacts effectively, it is challenged to adequately sample long-

range contacts, especially for larger proteins (Bonneau et al.,

2002; Lange and Baker, 2012). As evidence, modifying the algo-

rithm to allow for random chain breaks improves performance

when using long-range contacts as restraints (Barth et al., 2009).

BCL::Fold (BCL, BioChemical Library) is a protein structure

prediction method that rapidly assembles secondary structure
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elements (SSEs) into topologies (Karakasx et al., 2012). For

soluble proteins, a pool of predicted SSEs is generated using

JUFO (Meiler et al., 2001) and PSIPRED (Jones, 1999). The

SSEs are then assembled using a Monte Carlo (MC) assembly

protocol and evaluated using a consensus knowledge-based

scoring function (Woetzel et al., 2012) via the Metropolis crite-

rion. The method achieves prediction accuracies comparable

to Rosetta.

We hypothesize that assembly of SSEs is a particularly

efficient approach to sampling MP topology space; helical MP

topology is defined by the relative orientation of the transmem-

brane helices (TMHs). Although there are many variations of

the canonical bundle of TMHs (Nugent and Jones, 2012a), the

fold space of MPs is much reduced when compared to soluble

proteins (Oberai et al., 2006). The underlying hypothesis of

BCL::Fold is that the interactions between SSEs determine the

majority of the protein core and therefore give rise to its thermo-

dynamic stability. For the TMHs in MPs this is particularly true,

as the apolar membrane environment promotes formation of

secondary structure, thereby minimizing the error introduced

into BCL::Fold through the absence of loop regions in the initial

assembly. In order to test this hypothesis and begin to predict

the structure of larger membrane proteins in the absence of

experimental data, we have developed BCL::MP-Fold to predict

MP topology. The scoring functions were modified to account

for the unique properties of the apolar membrane in the amino

acid environment potential and an increased radius of gyration

along the membrane normal. Three additional scores are intro-

duced to describe the preferred orientation of SSEs with respect

to the membrane, penalize connection of two neighboring TMHs

that would require passage through the membrane, and assess

the agreement of amino acid placement in membrane regions

with prediction from sequence. As many MPs are obligate

homo-oligomers, a symmetrical folding mode was introduced.

The method was benchmarked against 40 MPs of known struc-

ture. In 34 cases, BCL::MP-Fold was able to sample the native

topology, indicating that assembly of discreet SSEs is a viable

strategy in de novo membrane protein topology determination.

RESULTS

The BCL::Fold protocol (Karakasx et al., 2012) was first updated

to accommodate MP structure determination. This involved

the addition of further assembly stages prior to refinement, the

incorporation of MP-specific scores, and the incorporation

of MP-specific MC moves. Additionally, symmetric multimer

folding was introduced in order to predict homomultimeric

MP structure. Finally, the updated method was benchmarked

against 40 MPs of known structure.

Multiphase MP Assembly from SSEs Begins
with Placement of TMHs
BCL::Fold for soluble proteins is broken into two stages: assem-

bly and refinement. Large-scale perturbations—such as SSE

transformations, SSE addition/deletion, and domain shuffling—

are utilized in the assembly stage. The refinement stage focuses

on small-amplitude transformations and SSE bending that apply

minor modifications to the topology established by the assembly

stage.
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To enable a subsequent assembly of TMH and non-TMH

SSEs, the assembly stage is broken up into five substages.

The weight of the clash scores (amino acid and SSE) start at

zero in the first stage and are increased linearly to maximum

values for the fifth stage. This allows for SSEs to ‘‘move through’’

each other during assembly, allowing for more efficient sampling

of distinct topologies. Additionally, two SSE pools are used dur-

ing the minimization. For the first two stages of refinement, the

SSE pool contains only TMHs predicted by SPOCTOPUS

(Viklund et al., 2008). This allows for the core of the MP to be

assembled without interference from small, amphipathic helices

or soluble SSEs that do not determine the overall MP topology.

Once the core has been assembled in the second stage, the re-

maining stages utilize a pool that contains both SPOCTOPUS

and JUFO9D (Leman et al., 2013) predictions. This serves two

purposes. First, because SPOCTOPUS only predicts TMHs,

additional SSEs predicted by JUFO9D can be added at this

point. Second, SPOCTOPUS predictions are rather rigid with re-

gard to TMH length; the addition of JUFO9D allows for shrinking/

extending of the TMHs based on the predicted probability

and the associated knowledge-based (KB) potential. Finally, in

the refinement stage, small moves optimize SSE interactions

and packing. This stage is identical to the one described for

soluble proteins, aside from the MP-specific scores and moves

described below. The complete assembly and refinement

process is repeated 1,000 times to generate the final models

(Figure S1A available online; Movie S1).

Three-Layer Implicit Membrane Representation
with a Total Thickness of 50 Å
BCL::MP-Fold uses a static, three-layer membrane object

(Figure 1A) with scoring functions optimized for each of the

three layers. Themembrane apolar core is 20 Å thick. A transition

region of 10 Å on either side of the membrane core marks the

position of lipid head groups. Beyond this transition region, reg-

ular potentials for soluble proteins are assumed. To facilitate a

smooth transition between the layers, 2.5 Å gaps are introduced

between the membrane core and transition region and between

the transition region and soluble region. The total membrane

thickness is therefore 50 Å. Thickness of the membrane core

and transition region were held constant for the present study

but can be manually adjusted if desired. Bicubic splines are

used to ensure that all potentials are smooth and continuously

differentiable, especially along the membrane normal. During

the MC assembly process, the membrane is situated along

the x-y plane, with the z axis as the membrane normal. The

minimization starts with the placement of a single, random

TMH in the membrane, with its main axis perpendicular to the

membrane plane.

BCL::Score: Scoring Soluble Proteins

BCL::MP-Fold modifies the established soluble scoring function.

Here, we briefly summarize the theory used to derive the poten-

tial. The reader is referred to the BCL::Score manuscript for

additional details (Woetzel et al., 2012). The soluble BCL::Fold

method evaluates models using BCL::Score, a knowledge-

based potential, derived using Bayes’s theorem:

PðstructjseqÞ=PðstructÞ3PðseqjstructÞ 3
1

PðseqÞ:
ed



Figure 1. MP-Specific Scoring Functions Account for the Unique Transmembrane Environment

(A) BCL::MP-Fold uses a staticmembrane object. Themembrane core is 20 Å thick. A 2.5 Å gap separates the core from each 10 Å thick transition region. Another

2.5 Å gap separates the transition region from the solution.

(B) Protein model after collapsing along the membrane normal.

(C) Squared radius of gyration values are shown before (blue squares) and after (red circles) collapsing themembrane along the normal. Collapsing themembrane

produces more realistic squared radius of gyration values for smaller MPs (<200 amino acids); the extrapolated line crosses the y axis much closer to 0 after

collapsing.

(D) Radius of gyration using collapsed coordinates along the z axis in the membrane core.

(E) Representative amino acid environment potentials for each environment type: solution (SO), transition (TR), and membrane core (MC). Refer to Figure S2 for

the complete plot of potentials.

(F) SSE alignment relative to the membrane plane for each environment type.
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P(struct) is the probability of observing the structure, indepen-

dent of the sequence. This term describes the relative arrange-

ment of SSEs in space. P(seqjstruct) is the probability of

observing the sequence for a given structure. This term ad-

dresses the likelihood of the placement of specific amino acid

types into SSEs. P(seq) is constant for protein structure predic-

tion. Individual knowledge-based scores therefore contribute

to one of two terms: P(struct)—structure based, or P(seqj-
struct)—sequence based. All probabilities are converted to po-

tentials using the inverse Boltzmann relation. The final score is

a linear combination of each potential and its optimized weight.

MP-Specific Scores Describe Rules that Govern MP

Topology

In order to accommodate the unique biophysical properties of

the membrane, two existing soluble knowledge-based scores

were modified (radius of gyration and amino acid environment)

and three new scores were introduced (SSE alignment, MP

topology, and environment prediction accuracy). Before

describing the scores in detail, the procedure used to evaluate

these scores is introduced.

A set of models was created by perturbing a subset of the

native structures from the benchmark set described in Table 1.

These BCL perturbed models were generated in a similar

manner as the soluble models (Woetzel et al., 2012). In order

for an identical topology to sample various environments, the

models were also subjected to two additional global transforma-

tions: a random translation along the z axis 0–5 Å, and a random

rotation of 0�–15� around a random axis in the x-y plane. The

native models were initially oriented in the membrane using
Struc
PDB_TM (Tusnády et al., 2005). Native-like models were defined

using three criteria: RMSD100 < 8.0 Å (Carugo and Pongor,

2001), RMSD100_XY < 10.0 Å, and contact recovery (CR) >

25.0% (Karakasx et al., 2012). The RMSD100_XY quality measure

was introduced in order to differentiate models with the same to-

pology but sampling different environments. For example, anMP

globally translated out of the membrane would have an

RMSD100 of 0.0 Å to the native, but when evaluated would pro-

duce a different score due to the different environment. To ac-

count for this property, atom coordinates are collapsed onto

the membrane plane prior to superimposition. The transforma-

tion required to achieve the optimal superimposition is then

applied to the original, precollapsed structure. In other words,

the superimposition of the target onto the native does not

change the atom z coordinates. The RMSD100 is then calculated

normally using the resulting coordinates.

The ability of each score to select for native-like models is

determined by its enrichment (Woetzel et al., 2012), which is its

ability to select the 10% native-like models out of the given

pool. Maximal enrichment is 10.0, no enrichment is 1.0, and

enrichment values less than 1.0 indicate the score disfavors

native-like models.

Modified Radius of Gyration Measure Deflates
Membrane Core Region
For soluble proteins, the normalized radius of gyration of a

model, NRgyr = (Rgyr)
2/length, is evaluated using a knowledge-

based potential such that P(struct) y P(NRgyr) (Woetzel et al.,

2012). In order to allow for TMHs to span the membrane without
ture 21, 1–11, July 2, 2013 ª2013 Elsevier Ltd All rights reserved 3



Table 1. Benchmark Statistics and Results

PDB ID Code TMH Domain Residues Subunits

BCL::MP-Fold Rosetta-Membrane

RMSD100 Score RMSD100 Score

Best Top 5% Best Top 5% Best Top 5% Best Top 5%

Traditional Folding

2BG9 3 A: 211–301 91 1 2.8 3.4 9.9 6.7 3.9 5.5 10.7 10.2

1NKZ 2 A: 2–53;

B: 1–41

93 1 4.3 4.6 11.2 8.3

2L35 3 A: 1–63;

B: 1–32

95 1 3.1 3.7 17.2 9.7

2KSF 4 396–502 107 1 3.9 4.5 5.1 5.6 5.6 6.9 10.5 10.9

1J4N 3 4–119 116 1 4.9 5.9 9.6 9.0 4.5 6.5 9.7 10.2

3SYO 2 76–197 122 1 5.2 6.3 9.7 10.0 6.4 7.9 11.0 11.2

1PY6 4 77–199 123 1 3.9 4.7 5.4 6.4 2.2 3.2 2.8 5.7

2PNO 4 A: 2–131 130 1 5.0 6.7 5.4 8.6 4.0 5.1 9.4 8.2

2BL2 4 12–156 145 1 2.9 3.8 6.7 7.3 2.2 3.1 3.5 5.6

2K73 4 1–164 164 1 4.7 5.9 10.1 9.1 3.4 5.2 8.7 8.4

1RHZ 5 A: 23–188 166 1 6.7 8.0 9.9 10.4 6.0 7.9 9.3 11.7

1IWG 5 330–497 168 1 4.3 5.6 8.5 8.3 5.1 6.9 8.5 9.3

3P5N 6 10–188 179 1 5.8 7.4 8.3 9.8 5.2 6.9 12.0 9.6

2IC8 6 91–272 182 1 6.0 7.2 9.5 9.3 5.2 7.2 10.1 10.5

2YVX 5 A: 284–471 188 1 5.1 6.9 9.2 9.4 5.7 7.6 8.9 10.5

1PV6 6 1–190 189 1 5.7 6.8 10.6 9.4 6.2 7.6 10.0 10.4

1OCC 5 C: 71–261 191 1 4.6 5.9 8.5 8.0 7.3 9.2 10.8 11.3

2NR9 6 4–195 192 1 5.7 7.2 8.7 9.5 5.6 7.6 10.5 10.5

4A2N 5 1–192 192 1 4.3 6.2 8.1 8.8 5.0 7.1 9.6 10.3

1KPL 7 31–233 203 1 8.7 10.5 14.4 12.5 11.1 13.2 15.4 16.1

2ZW3 4 A: 2–217 216 1 4.0 5.1 9.2 8.1 6.7 8.4 13.5 11.1

2BS2 5 C: 21–237 217 1 5.4 6.9 11.0 9.2 6.0 8.5 13.0 10.9

1L0V 6 C: 20–130;

D: 10–119

221 1 5.2 7.2 9 9.4

2KSY 7 1–223 223 1 5.1 6.3 9.3 8.6 4.6 5.7 6.1 9.1

1PY6 7 5–231 227 1 4.8 5.9 6.1 8.4 3.3 5.8 8.4 8.7

3KCU 7 29–280 252 1 7.3 8.5 11.2 10.5 7.2 9.3 11.0 11.4

1FX8 7 6–259 254 1 6.4 7.6 9.3 9.8 8.9 10.4 11.8 12.4

1U19 7 33–310 278 1 5.3 6.6 8.9 8.8 9.7 12.7 10.7 15.2

1OKC 6 2–293 292 1 7.1 8.2 9.9 10.3 10.3 11.7 12.5 13.5

3KJ6 7 A: 35–346 311 1 5.9 7.4 10.5 10.0 8.0 10.5 13.6 13.2

3B60 6 A: 10–328 319 1 9.5 10.8 12.4 13.2 6.8 8.0 10.4 10.0

3HD6 12 6–448 403 1 7.2 8.2 11.0 10.3 8.0 9.5 11.9 11.7

3GIA 12 3–435 433 1 9.6 10.7 13.4 12.6 11.6 13.9 14.2 15.8

3O0R 12 B: 10–458 449 1 6.9 8.2 10.2 10.3 6.8 8.6 12.3 11.1

2XUT 12 A: 13–500 488 1 7.7 9.0 10.2 11.4 9.4 11.1 13.6 13.3

3HFX 12 12–504 493 1 8.9 9.7 13.1 11.4 11.7 13.5 15.3 15.4

1YEW 14 A: 151–225;

B: 7–244;

C: 45–259

528 1 9.7 11.5 14.1 13.3

2XQ2 15 A: 9–573 565 1 8.2 10.1 12.2 12.1 11.6 13.2 12.6 15.4

Mean 7 242 1 5.8 7.1 9.9 9.6 6.6 8.4 10.6 11.1

Std dev 3 130 0 1.9 2.0 2.5 1.8 2.7 2.8 2.8 2.6

(Continued on next page)
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Table 1. Continued

PDB ID Code TMH Domain Residues Subunits

BCL::MP-Fold Rosetta-Membrane

RMSD100 Score RMSD100 Score

Best Top 5% Best Top 5% Best Top 5% Best Top 5%

Multimer Folding

2HAC 1 �3–30 33 2 1.0 1.3 3.5 3.7

2KIX 1 1–33 33 4 2.2 2.4 5.7 4.2

1NKZ 2 A: 2–53;

B: 1–41

93 9 4.1 4.7 8.1 8.4

3SYO 2 76–197 122 4 9.3 9.6 10.7 10.5

2PNO 4 A: 2–131 130 3 3.3 5.2 10.5 8.1

2BL2 4 12–156 145 10 2.8 3.6 5.7 5.4

2YVX 5 A: 284–471 188 2 4.3 5.9 9.5 8.4

2ZW3 4 A: 2–217 216 6 4.8 5.6 7.9 8.0

1FX8 7 6–259 254 4 10.8 11.3 11.7 12.0

3B60 6 A: 10–328 319 2 7.9 9.2 11.3 11.1

3HD6 12 6–448 403 3 5.8 7.4 9.0 9.5

3HFX 12 12–504 493 3 8.7 9.6 10.9 11.3

Mean 5 202 4 5.4 6.3 8.7 8.4

Std dev 4 143 3 3.1 3.1 2.6 2.8

The RMSD100 values are reported after sorting the models by either RMSD100 or score. The RMSD100 is calculated over all Ca atoms in native SSEs.

Std dev, standard deviation.
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inflating the Rgyr score, the coordinates are collapsed along

the membrane normal by an amount equal to one-half of the

membrane core thickness, 10 Å, prior to the NRgyr calculation

(Figure 1B). The NRgyr is then evaluated using the KB potential

(Figure 1D), as for soluble proteins. The rationale for this proce-

dure is that minimizing the radius of gyration is an effect seen in

soluble proteins caused by the overall drive to (1) bury hydropho-

bic amino acids and (2) maximize constructive interactions of

side chains. This first component is absent once an amino acid

is embedded in the membrane core, that is, there is no force to

compact the MP along the membrane normal. As the second

component is still present, compacting forces in the membrane

plane are still active. Collapsing the membrane is particularly

important for smaller proteins (<200 residues), which would

otherwise have an unnaturally high (Rgyr)
2 value (Figure 1C).

The average enrichment value for the radius of gyration score

was 1.4 for each criterion. The percentages of models with a

Z score >1.0 were 56%, 61%, and 67% for the RMSD100,

RMSD100_XY, and CR criteria, respectively.

Amino Acid Environment Potential Reflects Apolar
Membrane Core Region
The amino acid environment potential describes the preference

for a particular amino acid type to be exposed or buried:

P(seqjstruct) y PiP(aaijei), where aai is the residue type and ei
is the modified neighbor count. The MP amino acid environment

score function is determined identically to its soluble counter-

part, except that the procedure is executed separately for the

three membrane regions: membrane core, transition, and solu-

tion. For residues in the gap regions, a weighted average of the

score in the neighboring regions is computed. Exposure is repre-

sented by neighbor count, such that a low neighbor count corre-
Struc
sponds to a high solvent-accessible surface area (Durham et al.,

2009). Figure 1E displays representative potentials; the complete

potentials can be found in Figure S2. As expected, the polar

serine and the negatively charged aspartate both favor buried

environments (higher neighbor counts) in the membrane core

relative to solution. Additionally, the hydrophobic leucine has

the opposite property, favoring a more exposed environment

in the membrane core. The average enrichment values for the

amino acid environment score were 2.7, 2.7, and 3.0 for

the RMSD100, RMSD100_XY, and CR criteria, respectively.

The percentages of models with a Z score >1.0 were 88%,

100%, and 100%.

TMH Alignment Displays Strong Preference to Be
Parallel with Respect to the Membrane Normal
During the BCL::MP-Fold minimization, SSEs can be rotated in

any orientation. In order to select for models with TMHs properly

spanning the membrane, an SSE alignment score was intro-

duced. This score evaluates the measured angle, q, of the SSE

to the membrane plane given the environment type (Figure 1F),

such that P(struct)yPiP(SSEijqi). TMHs tend to span the mem-

brane at a 70�–90� angle to the membrane plane. The average

enrichment values for the SSE alignment score were 2.2, 2.3,

and 2.4 for the RMSD100, RMSD100_XY, and CR criteria,

respectively. The percentages of models with a Z score >1.0

were 89%, 94%, and 94%.

MP Topology Score Penalizes Loop Connections
between TMHs that Require Passage through
the Membrane
TM loops (coils) are rare, short, and typically associated with

reentrant regions and functional sites in kinked TMHs (Kauko
ture 21, 1–11, July 2, 2013 ª2013 Elsevier Ltd All rights reserved 5
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et al., 2008). Because BCL models do not contain loops during

minimization, a penalty score is needed to disfavor topologies

that would require long membrane-spanning loop regions to

connect two TMHs. Although the soluble protein loop scores

are still utilized for MP folding, they only ensure that the loop

can be closed, not that the loop will be in a favorable environ-

ment. The MP topology score introduces a penalty when the C

terminus of a TMH is not on the same side of the membrane as

the N terminus of the subsequent TMH, for example. In practice,

this is achieved by grouping alternating TMHs and determining

whether the termini lie on the same side of the membrane. We

therefore evaluate P(struct) y PiP(TMHi, TMHi+1) and

EMPtopo =
X
i

�
0; sgnðzc;iÞ= sgnðzn;i + 1Þ
1; sgnðzc;iÞssgnðzn;i + 1Þ ;

where zc,i is the z coordinate of the C terminus of TMHi and zn,i+1
is the z coordinate of the N terminus of TMHi+1. SSEs that do not

span themembrane, such as amphipathic or soluble helices pre-

dicted by JUFO9D, are excluded from this analysis. The average

enrichment values for the MP topology score were 4.8, 4.2, and

2.5 for the RMSD100, RMSD100_XY, and CR criteria, respec-

tively. The percentage of models with a Z score >1.0 was

100% for each of the three criteria.
Agreement of Amino Acid Placement in Membrane
Regions Predicted from Sequence
Both SPOCTOPUS and JUFO9D predict the environment

type (membrane core versus soluble region) as well as the

secondary structure; SPOCTOPUS only predicts TMHs whereas

JUFO9D gives a nine-state prediction, with three secondary

structure types (helix, coil, strand) and three environment types

(membrane core, transition region, soluble region). Models are

therefore scored both on secondary structure and environment

prediction. The secondary structure agreement score is calcu-

lated in an identical manner as for soluble proteins with soluble

prediction methods (Woetzel et al., 2012). The membrane place-

ment prediction agreement is scored analogously, where the

probability of each residue to be observed in the current envi-

ronment type given the SPOCTOPUS and JUFO9D predictions

is calculated: P(seqjstruct) y PiP(aaijENVi).

The average enrichment values for the environment prediction

score were 3.0, 2.9, and 2.3 for the RMSD100, RMSD100_XY,

and CR criteria, respectively, for JUFO9D, and 2.8, 2.8, and

2.7 for SPOCTOPUS. The percentages of models with a Z score

>1.0 were 100%, 100%, and 88% for JUFO9D, and 100% for

all three criteria for SPOCTOPUS.
Efficient Sampling of MP Topologies through a Tailored
Set of MC Moves
The soluble BCL::Fold method utilizes a total of 107 MC moves

(Karakasx et al., 2012). They are classified into six categories:

(1) adding SSEs, (2) removing SSEs, (3) swapping SSEs, (4) sin-

gle SSE moves, (5) SSE pair moves, and (6) moving domains.

An additional move category, global transformations, containing

two moves, was added for membrane folding in order to effec-

tively sample the different membrane environments (Figure S1B).

First, a global translation of 2–10 Å along the membrane normal

allows for the protein to move in and out of the membrane.
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Second, a rotation around a random vector with the membrane

plane samples different orientations within themembrane. These

perturbations preserve protein structure and therefore have

no impact on previous components of the BCL::Fold scoring

function. They alter the five new/modified scores for MPs.

Multimerization Achieved by Replicating a Single
Subunit prior to Scoring
In order to facilitate prediction of homomultimeric MPs, folding

with cyclic symmetry was introduced. All perturbations are per-

formed on a single subunit, and the subunit is then replicated

around an axis of symmetry prior to scoring. The total number

of subunits is defined by the user prior to the minimization.

Additional perturbations are required to sample varying subunit

interfaces (Figure S1C). First, a random global rotation of the

primary subunit allows for a new interface to be sampled.

Second, a global translation toward or away from the symmetry

axis changes the compactness of the multimer. Third, a domain-

swap perturbation is also added that exchanges one SSE with

its counterpart in an adjacent subunit.

Benchmark Set of 40 MPs of Known Structure
A benchmark set of 40 MPs of known structure was created to

assess the protein structure prediction method. The set contains

all proteins from the Rosetta-Membrane benchmark (Yarov-

Yarovoy et al., 2006) as well as additional proteins that are

both structurally and functionally diverse (Table 1). The proteins

range from 91 to 565 residues and from 2 to 15 TMHs. Twelve of

the proteins form obligate multimers containing two to ten sub-

units, resulting in 66–1,479 total residues. One thousand models

were generated for each protein using the BCL::MP-Fold

algorithm. Two runs were performed for multimeric proteins—

structures were predicted of just the protomer using the stan-

dard method, and the structure of the complete multimer was

also predicted taking advantage of the cyclic symmetry in the

multimeric folding mode. PDB ID codes 2HAC and 2KIX were

only folded as multimers because they each contain only one

TMH per subunit. The quality of SSE placement is assessed

using the RMSD100 measure. A subset of the results is shown

in Figure 2; complete results can be found in Figure S3.

Among the single-subunit predictions, the average RMSD100

to the native of the best model sampled is 5.8 ± 1.9 Å (Table 1).

In 32 of the 38 cases (84%), the correct topology is sampled

using the criteria of RMSD100 < 8.0 Å. When large proteins con-

taining 12 or more TMHs are excluded, the correct topology is

sampled in 29 out 31 cases (94%). In 27 of the 38 cases

(71%), the top 5% of models by BCL::Score contain the correct

topology. This changes to 25 out of 31 cases (81%) when the

large proteins are excluded.

The two proteins with seven TMHs or fewer that BCL::MP-Fold

was unable to sample the correct topology were a subdomain

of the H+/Cl� transporter (Dutzler et al., 2002) (PDB ID code

1KPL) and the ABC transporter MsbA (Ward et al., 2007) (PDB

ID code 3B60). The H+/Cl� transporter was part of the Rosetta-

Membrane benchmark (Yarov-Yarovoy et al., 2006), and the

method performed similarly poorly. As the authors mention,

this protein has a particularly complex topology, compounded

by the SPOCTOPUS method only predicting five of the seven

transmembrane spans; the fourth and sixth TMHs are missed.
ed



Figure 2. Gallery of Select Benchmark Results

Left column: BCL score versus RMSD100 plots of

1,000 generated models. The 1,000 models generated

by BCL::MP-Fold for the prediction are shown in green.

In red, 50 minimizations of the native model using only

the refinement stage are shown. Middle column: side

view of the best model sampled. Right column: over-

head view of the best model sampled. The bottom

result, PDB ID code 2KIX, was generated using multi-

mer folding. For the gallery of the complete benchmark

results, please see Figure S3.
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JUFO9D successfully predicts these missing TMHs, but

because these predictions are not added to the SSE pool until

the third assembly stage, the BCL::MP-Fold method has diffi-

culty placing them correctly among the five previously placed

TMHs. When folding is initiated with the JUFO9D-predicted

TMHs, the correct topology is sampled; the RMSD100 of the

best model is then 7.1 Å. MsbA is a particularly difficult target.

First, the TMHs are extremely long (40+ residues), whereas the

SPOCTOPUS-predicted TMHs only span 21 residues each.

Second, the protein is flexible, with a large ligand-induced

conformational shift. Third, MsbA is a homodimer, which makes

it a better target for the multimeric predictions discussed below.

For the multimeric predictions, the average RMSD100 (over

the entire multimer) to the native of the best model sampled is

5.4 ± 3.1 Å (Table 1). This corresponds to 9 out of 12 cases

(75%) where the correct topology is sampled. In the same 9 of

12 cases (75%), the top 5% of models by BCL::Score contain

the correct topology. MsbAwas one of the successfully sampled

multimer targets, with the best model sampled having an

RMSD100 to the native of 7.7 Å.

Despite having only two TMHs per subunit, the tetrameric to-

pology of GIRK2 K+ channel protein (Whorton and MacKinnon,

2011) (PDB ID code 3SYO) was not correctly predicted by

BCL::MP-Fold. In particular, the current version of BCL::MP-

Fold cannot adequately form the ion-conducting channel

because it largely contains loop residues. Additionally, the

TMHs pass through the membrane at an angle of approximately

50�, rather than the more commonly observed and thus more

energetically favorable 70�–90� (Figure 1F). The tetrameric

glycerol-conducting channel (Fu et al., 2000) (PDB ID code

1FX8) was also a challenging multimeric target. In the native

tetramer, the core is dominated by interactions between TMH

2 and TMH 6, whereas in the best BCL model, the core only

contains TMH 2.

DISCUSSION

BCL::Fold has been updated via MP-specific energy potentials

and MC moves to accurately predict MP topology from

sequence. Correct topologies were sampled for 32 of 38 proto-

mer benchmark targets and 9 of 12 multimer benchmark targets.

These results demonstrate the viability of discontinuous TMH

placement to predict MP topology.

BCL::MP-Fold Produces Accurate Models for Targets of
Varying Size, Complexity, and SSE Content
The BCL::MP-Fold MP algorithm was able to sample the native

topology of PDB ID code 2XUT, a 12 TM, 488-residue protein.

The algorithm failed to predict the correct topology for the two

larger proteins, PDB ID codes 3HFX and 2XQ2, which places

the upper limit for single-subunit predictions at around 500 res-

idues. This is a considerable achievement for de novo MP struc-

ture prediction, as these larger proteins are typically excluded

from benchmark sets. For example, the largest Rosetta-

Membrane target, PDB ID code 1U19, contains 278 residues.

As expected, leveraging oligomeric symmetry greatly extends

the upper limit; the decameric PDB ID code 2BL2 contains

1,450 residues, and the best BCL model has an RMSD100 of

2.8 Å to the native.
8 Structure 21, 1–11, July 2, 2013 ª2013 Elsevier Ltd All rights reserv
One of the design goals when developing BCL::Fold was to

facilitate sampling of nonlocal contacts, resulting in more

accurate sampling of proteins of high contact order. For targets

containing less than 400 residues, this is the case (Figure 3A);

BCL::MP-Fold accurately samples native topologies with

normalized contact order (NCO) values ranging from 0.15 to

0.50. For targets larger than 400 residues, this is no longer the

case, with the highest NCO value sampled being 0.23. Thus,

the current algorithm is capable of sampling proteins with a

large number of residues (>400) or a high NCO (>0.25), but not

both. In order to keep sampling relatively rapid, each stage ter-

minates after a maximal number of MC steps—2,000 for each

assembly stage and 4,000 for the refinement stage. Sampling

for these large, complex proteins would likely benefit from

increased MC steps, as stages terminated at the maximum

54% ± 2% of the time for these three proteins (PDB ID codes

2XQ2, 3HFX, and 3GIA), versus 44% ± 7% of the time over the

entire benchmark.

The folding algorithm is also accurate for targets covering a

wide range of SSE content (from 70% to 92%) and SSE predic-

tion accuracy (average Q3 values from 0.60 to 0.90) (Figure 3B).

Not surprisingly, the method fails for PDB ID code 1YEW, which

has the lowest SSE content at 66% and average Q3 value at

0.50 of any protein in the benchmark set. Nonetheless, Figure 3

demonstrates that the BCL::MP-Fold algorithm is robust and

typically able to compensate for inaccuracies in secondary

structure prediction.

BCL::MP-Fold Samples More Native-like Topologies
Than Rosetta-Membrane
Rosetta is a well-established de novo protein structure predic-

tion method that has performed well during several iterations

of the Critical Assessment of protein Structure Prediction

(Raman et al., 2009). In 2006, themethod was updated to predict

membrane protein structure (Yarov-Yarovoy et al., 2006). In or-

der for a direct comparison between BCL::MP-Fold and Ro-

setta-Membrane, Rosetta 3.4 was used to predict structures

for each of the single-chain proteins in the benchmark set (Fig-

ures 3C and 3D; Table 1). In order to directly compare BCL

and Rosetta models, the RMSD100 values are calculated only

over Ca atoms in native SSEs. The average RMSD100 to native

of the best model sampled by Rosetta-Membrane is 6.6 ±

2.7 Å, compared to 5.9 ± 1.8 Å for BCL::MP-Fold for those

same proteins. The correct topology (RMSD100 < 8.0 Å) was

sampled in 25 out of the 34 cases (74%) by Rosetta-Membrane,

and in 29 cases (85%) by BCL::MP-Fold.

Limitations Include Amphipathic and Bent Helices
BCL::MP-Fold models do not typically accurately represent

amphipathic and bent helices. Amphipathic helices are difficult

to model for two reasons. First, placing the helix parallel to a

TMH maximizes packing and results in a favorable SSE packing

score. In the correct orientation, parallel to the membrane, SSE

packing is reduced and no other component of the consensus

energy function compensates. Second, the TMH alignment po-

tential in the transition region is very similar to that observed in

the membrane core (Figure 1F). TMHs tend to span both the

membrane core and the transition, and thus the bulk of the

counts in the transition region comes from TMHs and not
ed



Figure 3. Accurate Models Are Produced for Targets of Varying Size, Complexity, and SSE Content

(A) NCO versus amino acids. Each point represents the best model produced for a particular target. Single-subunit predictions are represented by circles

and multimer predictions are represented by squares. Both use the following coloring scheme based on RMSD100: RMSD100 < 6.0 Å (green),

6.0 Å % RMSD100 < 8.0 Å (light green), 8.0 Å % RMSD100 < 10.0 Å (yellow), and 10.0 Å % RMSD100 (red). Proteins with multiple chains in the protomer

are excluded because the contact order is undefined. For multimers, the contact order reported is for the protomer, whereas the amino acid count is the total for

the complete multimer.

(B) Q3 versus SSE content. The plotted Q3 value is the average of the JUFO9D and SPOCTOPUS predictions. SSE content is the percentage of residues that are

part of a helix or strand.

(C) RMSD100 of the top 5% of the best models versus amino acids. BCL::MP-Fold is shown as black triangles and Rosetta-Membrane as circles.

(D) RMSD100 was computed for BCL::MP-Fold and Rosetta-Membrane to the SSEs of the native models. The value for the top 1% of models ± SD sampled is

plotted for each method. The dashed lines at 8 Å indicate the arbitrary cutoff for ‘‘native-like’’ quality.
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amphipathic helices. Thus, placement of a short, amphipathic

helix parallel to a TMH in the transition region minimizes both

the SSE packing and TMH alignment scores. An additional KB

potential specific for amphipathic helices would likely be needed

to accurately predict these helices in future iterations of

BCL::MP-Fold.

The BCL::MP-Fold algorithm starts with an idealized, perfectly

straight, pool of SSEs. There are bending moves during the

simulation that bend the SSEs. Even so, the current algorithm

does not adequately capture the kinks and bends that are

commonly seen in native TMHs. This limitation can be overcome

with increased probabilities for the bending MC moves or more

sophisticated bend moves that perturb several f/c angles

simultaneously by fitting to observed TMH fragments.

Contact Recovery Can Be Improved
For soluble protein structure prediction using BCL::Fold,

accurately predicted models tend to have low RMSD100 values

and high contact recovery values (Karakasx et al., 2012). This is

not observed for MP structure prediction, however. When
Struc
CR >20% is considered to be ‘‘native-like,’’ the native conforma-

tion is only sampled in 61% of the single-subunit predictions,

compared to 84% using the RMSD100 < 8.0 Å criterion. This

suggests that although the TMHs span the membrane in the

correct places, they are not necessarily rotated correctly, with

normally contact-forming, buried residues instead are solvent

or membrane exposed. This property is due to the MP amino

acid environment potentials, which, consistent with the gener-

ated statistics and the underlying biophysics, are less discrimi-

nating than the soluble potentials. For example, when scoring

a soluble protein, helix rotations that place hydrophobic residues

in the core of the protein will be scored favorably. When scoring

an MP, on the other hand, rotations that bury hydrophobic resi-

dueswould be scored similarly to those rotations that expose the

hydrophobic residues. Addition of a knowledge-based exposure

score would likely improve TMH rotations. This would involve

implementing a method to predict individual residue exposure

(such as solvent-accessible surface area) from sequence in a

manner similar to secondary structure and environment predic-

tion by JUFO9D.
ture 21, 1–11, July 2, 2013 ª2013 Elsevier Ltd All rights reserved 9
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Enhanced Accuracy with Restraints
Experimental or predicted restraints can dramatically improve

MP structure prediction accuracy by limiting the potential

conformational space (Barth et al., 2009; Hopf et al., 2012;

Nugent and Jones, 2012b). This should hold for BCL::MP-Fold

as well, because the consensus scoring function is highly

adaptable and can be modified to incorporate restraints. In

fact, BCL::Fold has already been successfully applied to pro-

teins with medium-resolution cryo-electron microscopy data

(Lindert et al., 2009). Efforts are currently under way to incorpo-

rate additional restraint types such as NMR, electron paramag-

netic resonance, small-angle X-ray scattering, and contacts.

EXPERIMENTAL PROCEDURES

MP Databank

A databank of diverse MP structures was created in order to create statistics

for theMP-specific knowledge-based potentials. A subset of known structures

from the PDB was selected using the culling server PISCES (Wang and

Dunbrack, 2005). The following criteria were used to select proteins: sequence

identity less than 25%; resolution of less than 3.0 Å; R value of less than 0.3;

and sequence length of at least 40 residues. Only those structures determined

by X-ray crystallography were considered. The final list contained 111 MPs

and 175 chains. PDB_TM (Tusnády et al., 2005) was used to properly orient

each structure into the membrane.

Radius of Gyration

As for soluble proteins (Woetzel et al., 2012), the radius of gyration for MPs is

calculated using the formula

R2
gyr =

1

n
Sn

i =1ðri � rmeanÞ2

and is normalized,

NRgyr =
R2

gyr

length
:

For MPs, however, the Rgyr term is calculated using a collapsing normal. All

Cb atoms within the membrane core have their z coordinate set to zero. Atoms

outside the membrane core are translated toward the membrane plane by a

distance of 10 Å, which corresponds to one-half themembrane core thickness.

Statistics for NRgyr were collected over the MP databank in order to generate

the knowledge-based potential.

Amino Acid Environment

The amino acid environment potential is derived in the samemanner as for sol-

uble proteins (Woetzel et al., 2012). The potential is split into three components

based on environment type: membrane core, transition, and solution. Statis-

tics for the neighbor count for each residue type are then collected for each

of the three environment types in order to generate the separate potentials.

Histogram counts are normalized across membrane regions for each residue

type. If the residue is in a gap region, the score is calculated as a cosine-

weighted average of the two adjacent environments based on the z coordinate

of the Cb atom.

SSE Alignment

Separate potentials are generated for the membrane core, transition, and

soluble environment types. Helical SSEs in the BCL can be represented as

overlapping ideal fragments of five residues (Woetzel et al., 2012). Each frag-

ment is evaluated based on the angle between its main axis and themembrane

plane given the environment type. In a similar manner to the amino acid envi-

ronment potential, fragments in gap regions are scored as a cosine-weighted

average of the two adjacent environments based on the z coordinate of the

center of the fragment. The score for a given SSE is simply the sum of its frag-

ment scores.
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Membrane Topology

A set of predicted SSEsmaking up the transmembrane domain of the protein is

provided using SPOCTOPUS. The helical transmembrane segments of the

protein are assumed to have an antiparallel topology. During folding, the

current SSEs in the model are matched to the associated transmembrane

SSE expected from prediction. The N-terminal Ca atom coordinates for each

transmembrane helix are put into one of two groups according to which termini

should be on the same side of the membrane. The group is determined by the

SPOCTOPUS-predicted topology. Themembrane center has a z coordinate of

zero, so the side of the membrane a terminus lies on is given by the sign of the

z coordinate. Next, within a group, the coordinates are pairwise compared,

and a penalty is given for every pair of coordinates that reside on opposite

sides of the membrane. This selects for correctly placing N termini that should

be on the same side of the membrane. Last, coordinates are pairwise

compared between groups, and a penalty is given for every pair of coordinates

that reside on the same side of the membrane. This selects for correctly

placing N termini that should be on opposite sides of the membrane. The

above procedure is repeated for C-terminal Ca coordinates to give the final to-

tal penalty score.

Environment Prediction Agreement

The environment prediction agreement is scored analogously to the secondary

structure prediction agreement (Woetzel et al., 2012). Briefly,

EEnvPred =
X
i

� erf

�
pEnv;i � mEnv

sEnv

�
;

where pEnv,i is the probability of the observed environment in the model for res-

idue i, mEnv is the mean probability for an accurately predicted environment

type, and sEnv is the standard deviation for an accurately predicted environ-

ment type.

Benchmark

One thousand models were created for each protein in the benchmark set.

SSE pools were generated using the BCL application BCL::SSEPool (Karakasx
et al., 2012). The initial pool was generated using SPOCTOPUS (Viklund et al.,

2008), and the final pool included both SPOCTOPUS and JUFO9D predictions.

Example score weight sets, stage files, and command lines for both

BCL::SSEPool and BCL::MP-Fold can be found in Supplemental Experimental

Procedures.

Availability

BCL::MP-Fold is implemented as part of the BioChemical Library, a suite of

software currently under development in the Meiler laboratory (http://www.

meilerlab.org). BCL software, including BCL::MP-Fold, is freely available for

academic use.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and one movie and can be found with this article online at

http://dx.doi.org/10.1016/j.str.2013.04.022.
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