
parative models demonstrate this amino acid pointing to the
inner side of the proposed binding pocket close to Phe7.35 (Fig.
7, A and B). Asn6.55 is a candidate for interaction with Arg35 of
hPP as in six models these residues are within a distance of 8 Å
(Fig. 8). Moreover, as reported recently, this position is involved
in ligand receptor interactions of many crystallized class A
GPCRs (2). This fact strongly supports our data and confirms
the role that Asn6.55 of hY4R has in the hPP binding pocket.

The results obtained on position Asn7.32 suggest that this
residue is a key player in the binding pocket of hY4R. The muta-

tion to Ala displays a small loss in potency for hPP. Prior studies
on the hY1R, PYY and 1229U91 (GR231118), a Y4R agonist and
a Y1R antagonist, displayed a loss in binding for N7.32A (54). It
could be shown that Asn7.32 might be in close proximity with a
positively charged residue, probably one of the two Arg of the
C-terminal segment of hPP. To characterize the relationship
between hY4R Asn7.32 and Arg33 of hPP, position 33 was mod-
ified to Lys to investigate the influence of the side chain length.
Also the asymmetric and symmetric side chain dimethylations
were tested at this position. Side chain methylations block

FIGURE 6. Concentration-response curves were determined with an immunoprecipitation accumulation assay with increasing concentrations of the
analogs. Functional investigations are shown for position 36 of hPP and Phe7.35 of hY4R. COS-7 cells were transiently co-transfected with hY4R constructs and
the chimeric G protein G��6qi4myr.

FIGURE 7. Characterization of the binding pocket of PP docked in the hY4R comparative model. A, side view of PP (purple) docked to hY4R (cyan). Residues
found to be important in the activation of hY4R by hPP are labeled. Predicted interactions are indicated by dotted red lines (salt bridge between Asp6.59 and
Arg35 and hydrogen bond between Arg33 and Asn7.32). B, top-down view of the same docked model. C, two docked models show the variability in ECL1. The
model shown in gray has a significantly longer ECL1 than that shown in cyan. Trp2.70, which was experimentally shown to be important in hY4R activation by
PP, is shown to be in different proximity to PP depending on the size of ECL1. D, side view of the same docked model shown in A and B. Residues experimentally
shown to be inactive in the binding of hPP to hY4R are indicated in black. The disulfide bond in ECL2 is also shown in yellow. a � His7.39; b � Gln3.32; c � Phe6.54;
d � His6.62; e � Tyr5.38; f � His5.34; g � Trp5.29; h � Phe4.80; i � Glu4.67; j � Glu4.79; k � Lys4.72; and l � Asp4.83.
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hydrogen bond donor positions and increase hydrophobicity
and bulkiness of the residue (57). Furthermore, the ability to
form polar interactions such as dipole-dipole interactions
might be impeded by double side chain methylation. The asym-
metric and symmetric double methylation on position Arg33 of
hPP produced a potency loss (6 –7-fold) on hY4R, probably by
blocking potential hydrogen bonding positions, potential
dipoles, or due to steric hindrance. On N7.32A, the double side
chain methylation at position Arg33 of hPP had a more dramatic
effect. This might cause conformational changes in doubly
methylated Arg33 of hPP impeding interactions with close by
residues such as Phe7.35. These data are in agreement with the
shortening of the side chain in [Lys33]hPP that resulted in a
smaller potency loss on N7.32A, suggesting that Asn7.32 and
Arg33 of hPP are in very close proximity. The fact that these
three peptide analogs displayed potencies similar to wild type
on N7.32D also supports an interaction with Arg33, because
Asp maintains the hydrogen bonding capability and incorpo-
rates a negative charge able to form an ionic bond with position
Arg33. Accordingly, we were able to demonstrate that Asn7.32

interacts with Arg33 possibly by hydrogen bonding or polar
interactions. This hypothesis is supported by the great rele-
vance of Arg33 as already demonstrated in the Ala scan (52).
Comparative models where Arg33 of hPP is located between
Asn7.32 and Phe7.35 of hY4R nicely reflect this hypothesis
(Fig. 7B).

The last residue of the proposed binding pocket is Phe7.35.
The exchange of Phe7.35 to Ile led to a higher potency and effi-
cacy loss than the exchange to Ala, possibly due to steric hin-
drance. This position has been found to belong to the binding
pocket of several class A GPCRs, among them the peptide
receptors human CXC chemokine receptor type 4 and the rat
neurotensin receptor 1 (2). Furthermore, this position might
highlight the singularity of the Y4R binding pocket with respect
to the Y1R. To investigate the role of hydrophobicity and size of
Arg33 of hPP toward Phe7.35 of hY4R, [ADMA33]hPP was tested

on F7.35A. The obtained results fit with the higher potency of
[ADMA33]hPP compared with [Lys33]hPP on F7.35A, because
the methyl groups can reduce the distance between both posi-
tions. A second interaction point of Phe7.35 was suggested by
preliminary models to be Tyr36 as hypothesized in previous
studies on the Y1R (58). The fact that an aliphatic amino acid
such as Ile with a branched �-carbon is not tolerated in contrast
to Cha or Phe could suggest a need for space close to the
peptide backbone. Moreover, the effect of these ligands on
F7.35A indicates that in the absence of Phe at position 7.35
an aromatic amino acid must be present at position 36 of
hPP. This may arise for conformational reasons as only an
aromatic amino acid with a planar structure might be able to
contact position 7.35 in the absence of Phe. So, in the pres-
ence of both aromatic groups a �-� interaction might be
established between Phe7.35 and Tyr36. In the absence of the
aromatic group at position 36 of hPP, this residue might
form hydrophobic interactions instead.

Our data provide the first insights into the complex binding
pocket of the hY4R system derived from a combination of mod-
eling and mutagenesis. As it may not be possible to solve the
structure of all GPCRs, we demonstrate that this iterative
method of study is very promising for understanding structur-
ally uncharacterized receptors. As the model is in agreement
with experimental data, it can be used to generate further test-
able hypotheses regarding the receptor-peptide interaction
contributing to the development of ligands with enhanced
hY4R activity.
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FIGURE 8. hY4R and PP residues within an 8 Å distance (based on C-� atoms) represent possible binding interactions. Neighboring residue pairs were
collected across the nine final PP-hY4R docked models and presented as a heatmap indicating the most represented neighbors. hY4R residues are listed on the
x axis with their secondary structure indicated (orange � TM and blue � ECL). PP residues are listed on the y axis with similar secondary structure indications.
Numbers represent the number of models (out of nine) from which these residue pairs were within 8 Å. ICL, intracellular loop; ECL, extracellular loop.
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