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Abstract 

For many membrane proteins, the determination of their topology remains a challenge for 

methods like X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. 

Electron paramagnetic resonance (EPR) spectroscopy has evolved as an alternative technique to 

study structure and dynamics of membrane proteins. The present study demonstrates the 

feasibility of membrane protein topology determination using limited EPR distance and 

accessibility measurements. The BCL::MP-Fold (BioChemical Library membrane protein fold) 

algorithm assembles secondary structure elements (SSEs) in the membrane using a Monte Carlo 

Metropolis (MCM) approach. Sampled models are evaluated using knowledge-based potential 

functions and agreement with the EPR data and a knowledge-based energy function. Twenty-

nine membrane proteins of up to 696 residues are used to test the algorithm. The RMSD100 

value of the most accurate model is better than 8Å for twenty-seven, better than 6Å for twenty-

two and better than 4Å for fifteen out of twenty-nine proteins, demonstrating the algorithms 

ability to sample the native topology. The average enrichment could be improved from 1.3 to 

2.5, showing the improved discrimination power by using EPR data. 

Introduction 

Membrane protein structure determination continues to be a challenge. About 22% of proteins 

are membrane proteins and an estimated 60% of pharmaceutical therapies target membrane 

proteins1. However, only 2.5% of the proteins deposited in the Protein Data Bank are classified 

as membrane proteins2,3. Protein structures are typically determined to atomic detail using X-ray 

crystallography or NMR spectroscopy. However membrane proteins provide challenges for both 

techniques4. It is difficult to obtain quantities of purified membrane proteins sufficient for both, 
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X-ray crystallography and NMR. The two-dimensional nature of the membrane complicates 

crystallization in a three-dimensional crystal lattice. In order to obtain crystals, the target protein 

is often subjected to non-native-like environments and/or modifications such as stabilizing 

sequence mutations5,6. Additional problems may evolve from posttranslational modification such 

as phosphorylation7. Many membrane proteins continue to be too large for structure 

determination by NMR spectroscopy8. Even if the target itself is not too large, the membrane 

mimic adds significant additional mass to the system9. Despite wonderful successes in 

determining the structure of high-profile targets, it is critical that the structural features observed 

with one technique are confirmed with an orthogonal technique10. 

EPR spectroscopy in conjunction with site-directed-spin-labeling (SDSL) provides such an 

orthogonal technique for probing structural aspects of membrane proteins11–13. Advantages of 

EPR spectroscopy include that the protein can be studied in a native-like environment and that 

only a relatively small sample amount is required. In addition, EPR spectroscopy can be used to 

study large proteins. Although EPR is a versatile tool for probing membrane protein structure, it 

has its own challenges: at least one unpaired electron (spin label) needs to be introduced into the 

protein. Typically, this requires mutation of all cysteine residues to either alanine or serine, 

introduction of one or two cysteines at the desired labeling sites, coupling to the thiol-specific 

nitroxide spin label MTSSL, and functional characterization of the protein. As a result, datasets 

from EPR spectroscopy are sparse containing only a fraction of measurements per residue in the 

target protein. EPR is not a high-throughput technique. 

EPR provides two categories of structural information important to membrane protein topology: 

First, EPR can provide information about the local environment of the spin label14–16. The 

accessibility of the spin label to oxygen probe molecules indicates the degree of burial of the spin 
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label within the protein in the trans-membrane region. Accessibility measurements are typically 

performed in a sequence scanning fashion. This provides an accessibility profile over a large 

portion of the sequence17,18. The accessibility profile tracks the periodicity of SSEs as individual 

measurements rise and fall according to the periodic exposure and burial of residues. The 

exposed face of a SSE can be determined19, a task that is difficult within the hydrophobic 

environment of the membrane. Secondly, when two spin labels are introduced, EPR can measure 

inter-spin label distances, routinely of up to 60Å through the DEER experiment20,21. EPR 

distance measurements have been demonstrated on several large membrane proteins including 

MsbA22, rhodopsin23, and LeuT24. Given the sparseness of data, EPR has been frequently used to 

probe different structural states of proteins25,26. Changes in distances and accessibilities track 

regions of the protein that move when converting from one state into another. Such 

investigations rely upon an already determined experimental structure to define the protein 

topology and provide a scaffold to map changes observed via EPR spectroscopy. 

One critical limitation for de novo protein structure prediction from EPR data is that 

measurements relate to the tip of the spin label side chain where the unpaired electron is located 

while information of the placement of backbone atoms is needed to define the protein fold. For 

distance measurements, this introduces an uncertainty in relating the distance measured between 

the two spin labels to a distance between points in the backbone of the protein. This uncertainty, 

defined as the difference between the distance between the spin labels and the distance between 

the corresponding Cβ atoms is up to 12Å27,28. To address this uncertainty we previously 

introduced a cone model which provides a knowledge-based probability distribution for the Cβ 

atom distance given an EPR-measured spin label distance27,29. Using the cone model, just 25 or 

even 8 EPR measured distances for T4-lysozyme, enabled Rosetta to provide models matching 

Page 4 of 43

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics

This article is protected by copyright. All rights reserved.



5 

 

the experimentally determined structure to atomic detail including backbone and side-chain 

placement27. Further success was reported by Yang30, who successfully determined the tertiary 

structure of a homo-dimer by using inter-chain restraints determined from NMR and EPR 

experiments. These studies demonstrate that de novo prediction methods can supplement EPR 

data sufficiently to allow structure elucidation of a protein. 

De novo membrane protein structure prediction was demonstrated with Rosetta using twelve 

proteins with multiple transmembrane spanning helices31. The method was generally successful 

for the membrane topology for small proteins up to 278 residues. The results of the study suggest 

that sampling of large membrane topologies requires methods that directly sample structural 

contacts between sequence distance regions of the protein32. 

For this purpose we developed an algorithm that assembles protein topologies from SSEs termed 

BCL::Fold33. The omission of loop regions in the initial protein folding simulation allows 

sampling of structural contacts between regions distant in sequence and thereby rapidly 

enumerates all likely protein topologies. A knowledge-based potential guides the algorithm 

towards physically realistic topologies. The algorithm is particularly applicable for the 

determination of membrane protein topologies as trans-membrane spans are dominated by 

regularly ordered SSEs34. Loop regions and amino acid side chains can be added in later stages 

of modeling structure. The algorithm was tested in conjunction with medium resolution density 

maps35 achieving models accurate at atomic detail in favorable cases36. The algorithm was also 

tested in conjunction with sparse NMR data37. 

The present study combines EPR distance and accessibility restraints with the BCL::Fold SSE 

assembly methodology for the prediction of membrane protein topologies. In a first step, we 

Page 5 of 43

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics

This article is protected by copyright. All rights reserved.



6 

 

introduce scores specific to EPR distances and accessibilities and demonstrate their ability to 

enrich for accurate models. In a second step, we assemble twenty-three monomeric and six 

multimeric membrane proteins guided by EPR distance and accessibility restraints. The results 

show that the inclusion of protein specific structural information improves the frequency with 

which accurate models are sampled and greatly improves the discrimination of incorrect models. 

Materials and Methods 

Compilation of the benchmark set 

Twenty-nine membrane proteins of known structure were used to demonstrate the ability of EPR 

specific scores to improve sampling during protein structure prediction as well as selecting the 

most accurate models. The proteins for the benchmark were chosen to cover a wide range of 

sequence length, number of SSEs and percentage of residues within SSEs (Table I). Twenty-

three of the proteins are monomers ranging in size from 91 to 568 residues. One protein (2L35) 

has two chains, with the second chain being a single transmembrane span. The remaining five 

proteins are symmetric multimeric proteins of two or three subunits containing up to 696 

residues. 5000 independent structure prediction trajectories are conducted for each protein 

without restraints, with distance restraints only, with accessibility restraints only, and with 

distance and accessibility restraints. In order to achieve results that are independent of one 

specific spin labelling pattern, ten different restraint sets are used for each protein. Those 

trajectories are conducted with SSEs predicted from sequence and, to test the influence of 

incorrectly predicted secondary structure, with the SSEs obtained from the experimentally 

determined structure. In addition, rhodopsin (protein data bank entry 1GZM) was added to the 
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benchmark set to demonstrate the algorithms’ ability to work with experimentally determined 

restraints. 

Simulation of EPR restraints 

For 1GZM EPR distance restraints were available23, while for the other proteins EPR distance 

and accessibility restraints were simulated to obtain datasets for each of the twenty-nine proteins. 

Accessibility restraints were simulated by calculating the neighbor vector value38 for residues 

within SSEs of each protein. Unlike the neighbor count approximation of solvent accessible 

surface area (SASA), the neighbor vector approach takes the relative placement of the neighbors 

with respect to the vector from the Cα atom to the Cβ atom into account. It thereby becomes a 

more accurate predictor of SASA38. The resulting exposure value for each residue was 

considered an oxygen accessibility measurement. One restraint per two residues within the trans-

membrane segment of each SSE was simulated. 

Distance restraints were simulated using a restraint selection algorithm39 which distributes 

measurements across all SSEs. It also favors measurements between residues that are far apart in 

sequence. One restraint was generated per five residues within the trans-membrane segment of 

an SSE, if not indicated otherwise. Distances are calculated between the Cβ atoms; for glycine, 

the Hα2 atom is used. To simulate a likely distance observed in an actual EPR experiment, the 

distance is adjusted by an amount selected randomly from the probability distribution of 

observing a given difference between the spin-spin distance (DSL) and the back bone distance 

(DBB)28. In order to reduce the possibility of bias arising from restraint selection and spin 

labelling patterns, ten independent restraint sets were generated. For the five symmetric 
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multimeric proteins, the same protocol was used, but only distance restraints between the same 

residues in the different subunits were considered. 

Translating EPR accessibilities into structural restraints 

EPR accessibility measurements are typically made in a sequence scanning fashion over a 

portion of the target protein. While each individual accessibility measurement is difficult to 

interpret, the pattern of accessibilities over a stretch of amino acids within an SSE indicates 

reliably which phase of the SSE is exposed to solvent/membrane versus buried in the protein 

core. We found accessibility restraints to have a limited impact on structure prediction for 

soluble proteins27. We concluded that this is the case as knowledge-based potentials on their own 

can distinguish the polar phase of an SSE that is exposed to an aqueous solvent from a 

hydrophobic phase buried in the protein core. However, we also hypothesized that the situation 

will be different for membrane proteins where it would be harder to distinguish the membrane-

exposed from the buried phase of an α-helix as both of these tend to be apolar.  

Our approach for developing an EPR accessibility score takes advantage of the regular geometry 

within the SSE: The exposure moment of a window of amino acids is defined as 	�� =

	∑ ����
	
�
� , where N is the number of residues in the window, �� is the exposure value of residue 

n, and �� is the normalized vector from the Cα atom to the Cβ atom of residue n. This equation 

was inspired by the hydrophobic moment as previously defined 40. The exposure moment 

calculated from solvent accessible surface area SASA has been previously shown to approximate 

the moment calculated from EPR accessibility measurements19.  

During de novo protein structure prediction, the protein is represented only by its backbone 

atoms hampering calculation of SASA. Further, calculation of SASA from an atomic-detail 
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model would be computationally prohibitive for a rapid scoring function in de novo protein 

structure prediction. Therefore, the neighbor vector approximation for SASA is used38. The 

exposure moment is calculated for overlapping windows of length seven for α-helices and four 

for β-strands. The score is computed as Sorient = -½ cos (θ) where θ is the torsion angle between 

the exposure moments. This procedure assigns a score of -1 is given if θ = 0° and a score of 0 if θ 

= 180° (Figure 1). 

Figure 1 

It has previously been demonstrated that the burial of sequence segments relative to other 

segments can be determined from the average accessibility values measured for that stretch of 

sequence 41. To capture this information, the magnitude of the exposure moment for overlapping 

residue windows is determined from the model structure and from the measured accessibility. 

The Pearson correlation is then calculated between the rank order magnitudes of the structural 

versus experimental moments. This gives a value between -1 which indicates the structural and 

exposure magnitudes are oppositely ordered, and 1, which means the structural and exposure 

magnitudes are ordered equivalently. The score Smagn is obtained by negating the resulting 

Pearson correlation value so that matching ordering will get a negative score and be considered 

favorable. 

Translating EPR distances into structural restraints 

The motion-on-a-cone model27 yields a predicted distribution for the difference between DSL and 

DBB. This distribution was converted into a knowledge-based potential function which is used to 

score the agreement of models with experimentally determined EPR distance restraints28. This 

score spans a range of DSL - DBB between ±12Å. DSL is the EPR measured distance between the 
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two spin labels; DBB is the distance between the corresponding Cβ or Hα2 atoms on the residues 

of interest; DSL - DBB is the difference between these two distances (Figure 1).  

In addition, we found it beneficial to add an attractive potential on either side of the range 

spanned by the scoring function to provide an incentive for the MCM minimization to bring 

structures within the defined range of the scoring function. These attractive potentials use a 

cosine function to transition between a most unfavorable score of 0 and a most favorable score of 

-1. The attractive potential is positive for 30Å ≥ │DSL – DBB │≥ 12Å. It levels to 0 when the 

difference between DBB and DSL approaches 12Å. 

Summary of the folding protocol 

The protein structure prediction protocol (Figure 2) is based on the protocol of BCL::Fold for 

soluble proteins33. The method assembles SSEs in the three-dimensional space, drawing from a 

pool of predicted SSEs. A Monte Carlo energy minimization with the Metropolis criteria is used 

to search for models with favorable energies. Models are scored after each Monte Carlo step 

using knowledge-based potentials describing optimal SSE packing, radius of gyration, amino 

acid exposure, and amino acid pairing, loop closure geometry, secondary structure length and 

content, and penalties for clashes42.  

The algorithm was adapted for membrane protein folding by altering the amino acid exposure 

potential according to an implicit membrane environment34. Additional scores are used which 

favor orthogonal placement of SSEs relative to the membrane (SSEalign) and penalizing models 

with loops going through the membrane (MPTop). All moves introduced for soluble proteins are 

used33. In addition, we include perturbations that optimize the placement of the protein in the 
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membrane such as translation of individual SSEs in the membrane as well as rigid body 

translation and rotation of the entire protein. 

Figure 2 

The assembly of the protein structure is broken down into five stages of sampling with large 

structural perturbation moves that can alter the topology of the protein. Each of the five stages 

lasts for a maximum of 2000 Monte Carlo steps. If an energetically improved structure has not 

been generated within the previous 400 Monte Carlo steps, the minimization for that stage will 

cease. Over the course of the five assembly stages, the weight of clashing penalties in the total 

score is ramped as 0, 125, 250, 375, and 500. 

Following the five stages of protein assembly, a structural refinement stage takes place. This 

stage lasts for a maximum of 2000 Monte Carlo steps and will terminate sooner if an 

energetically improved model is not sampled within the previous 400 steps. The refinement stage 

consists of small structural perturbations, which will not drastically alter the topology of the 

protein model. 

After 5000 models have been generated for each protein, the models are filtered according to 

EPR distance score. The top 10% or 500 models resulting from the structure prediction protocol 

are selected for a second round of energy minimization. The second round occurs as described 

above, the only difference being that the minimization uses the SSE placements of a given 

protein as a starting point. For each starting structure, 10 models are created, resulting in 5000 

models. This boot strapping approach which re-optimizes structures that are in good agreement 

with the EPR restraints and with the knowledge-based potential was beneficial when combining 

BCL::MP-Fold with limited NMR data and is not applied when no experimental data are used37. 
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Summary of the benchmark setup 

To test the influence of EPR restraints, each protein besides 1GZM was folded in the absence of 

restraints, with just distance restraints, with just accessibility restraints, and with distance and 

accessibility restraints. To test the influence of secondary structure prediction accuracy (see 

methods section), the experiment was repeated with optimal secondary structure elements 

derived from the experimentally determined structure. 1GZM was only folded without restraints 

and with the experimentally determined distance restraints. 5000 models were created for each of 

the benchmark proteins in independent MCM folding trajectories. EPR distance and accessibility 

scores are used during the five assembly and one refinement stages of structure prediction 

protocol. The EPR distance scores have a weight of 40 during all assembly and refinement stages 

using either pool. 

Structure prediction protocol 

For each protein, two sets of SSE pools are generated for use during structure assembly. The first 

SSE pool consists of the transmembrane spanning helices as predicted by Octopus. The second 

SSE pool contains elements predicted by Octopus as well as SSEs predicted from sequence by 

Jufo9D. Using these two SSE pools, the structure prediction protocol is independently conducted 

twice: a) once using the SSE pool containing predictions from Octopus and Jufo9D (“full pool”) 

and b) once emphasizing the predictions by Octopus (“Octopus pool”). Emphasis is placed on 

Octopus predictions by using only the Octopus generated SSE pool during the first two stages of 

assembly. During last three stages of structure assembly, the SSEs predicted from Jufo9D are 

added to the pool. This allows for better coverage of SSEs within the structure, since Octopus 

only predicts transmembrane spanning helices.  
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EPR specific scores are used during the five assembly and one refinement stages of structure 

prediction. The EPR distance scores have a weight of 40 over the course of the assembly and 

refinement stages. 

Calculating EPR score enrichments 

The enrichment value is used to evaluate how well a scoring function is able to select the most 

accurate models from a given set of models. The models of a given set � are sorted by their 

RMSD100 values. The 10% of the models with the lowest RMSD100 values put into the set  

(positive) the rest of the models will be put into the set � (negative). The models of � are then 

also sorted by their assigned scoring value and the 10% of the models with the lowest (most 

favorable) score are put into the set	�. The models, which are in  and in � are the models, 

which are correctly selected by the scoring function and their number will be referred to as � 

(true positives). The number of models, which are in  but not in � are the models which are not 

selected by scoring function despite being among the most accurate ones. They will be referred 

to as ��  (false negative). The enrichment will then be calculated as 	� =
#��

#�
∙
#��#�

#�
. The 

positive models are in this case considered the 10% of the models with the lowest RMSD100 

values. Therefore 
#��#�

#�
 is a constant value of 10.0. No enrichment would be a value of 1.0 and 

an enrichment value between 0.0 and 1.0 indicates that the score selects against accurate models. 

Results 

Using EPR specific scores during membrane protein structure prediction improves 

sampling accuracy 
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For each protein, the ten models sampled with the best RMSD10043 values are used to determine 

ability to sample accurate models by taking their RMSD100 value average, µ10. Using the best 

ten models by RMSD100 provides a more consistent measure of sampling accuracy compared to 

looking at the single best because of the random nature of the structure prediction protocol. 

Additionally, the percentages of models with an RMSD100 less than 4Å and less than 8Å, τ4 and 

τ8, were calculated.  

By using EPR distance and accessibility scores, not only is the frequency increased with which 

higher accuracy models are sampled, but best models achieve an accuracy not sampled in the 

absence of EPR data (Table III). Across all proteins, µ10 is, on average, 6.0Å when EPR distance 

and accessibility scores are not used. When adding restraints for distances and then both 

distances and accessibilities, the average µ10 value drops to 5.1Å and 5.0Å, respectively (Table 

III). By only adding EPR accessibility restraints the average µ10 over all proteins improves only 

slightly to 5.8Å. This shows that the accuracy of the models is primarily improved by using EPR 

distance restraints in the structure prediction process. With the exception of 1KPL and 2XUT, all 

proteins achieve a µ10 value of less than 8.0Å. This indicates the placement of the 

transmembrane spanning regions follow the experimentally determined structures and the correct 

fold could be predicted. Figure 3 compares the RMSD100 values of the average of the 1% most 

accurate models with and without the usage of EPR distance restraints – an average improvement 

of 0.8Å over the benchmark is observed. The shift to lower RMSD100 values in distributions for 

selected benchmark proteins is shown in Figure 4. The average τ4 and τ8 values improve from 3% 

and 13%, when folding without EPR restraints, to 6% and 19% when using EPR restraints, 

respectively.  
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The six multimeric proteins achieve an average µ10 value of 5.0Å when the structure prediction 

was conducted without using EPR restraints. By using EPR distance and accessibility restraints 

µ10 could be improved to 2.9Å. The τ4 and τ8 values could be improved from 13% and 24% to 

21% and 41% when using EPR distance and accessibility restraints in the structure prediction 

process. 

Figure 3 

EPR accessibility scores are important for improving contact recovery 

EPR accessibility scores were previously used in conjunction with the Rosetta protein structure 

prediction algorithm27. The scores were applied in a benchmark to predict the structures of the 

small soluble proteins T4-lysozyme and αA-crystallin. The improvement in sampling models 

that are more accurate was compared between prediction trajectories using an EPR distance 

score and trajectories using an EPR distance score coupled with an accessibility score. For T4-

lysozyme and αA-crystallin, using the accessibility score did not show a significant improvement 

in the accuracy of models sampled. This was attributed to the simple rule of exposure that is well 

captured by the knowledge-based potentials: polar residues tend to be exposed to solvent; apolar 

residues tend to be buried in the core of the protein. 

Membrane proteins are subjected to a more complex set of possible environments. Any given 

residue can reside buried in the core of the protein or exposed to different environments ranging 

from the membrane center to a transition region to an aqueous solvent. If the protein fold 

contains a pore, a residue can be solvent-exposed deep in the membrane44. Such a complex 

interplay of environments will not be as easily distinguished by knowledge-based potentials. 
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Here it has been demonstrated that using EPR accessibility information consistently improves the 

contact recovery for highest accurate models.  

While improvements regarding sampling accuracy and selection of the most accurate models by 

RMSD100 is mainly achieved by using EPR distance restraints, EPR accessibility restraints help 

determining the correct rotation state of SSEs and therefore improves the number of recovered 

contacts (Figure 3). A contact is defined as being between amino acids, which are separated by at 

least six residues and have a maximum Euclidean distance of 8Å. We are measuring the 

percentage of the contacts in the experimentally determined protein structure, which could be 

recovered in the models. In order to be independent of huge deviations occurring when only 

looking at the best model sampled, we quantify the average contact recovery of the ten models 

with the highest contact recovery (φ10) and the percentage of models which have more than 20% 

and 40% of the contacts recovered (γ20, γ40). 

For folding without EPR restraints, the average φ10 value over all twenty-three monomeric 

proteins was 23% while with accessibility restraints it was 31% (Table IV). Using distance 

restraints additionally to the accessibility restraints φ10 remains at 31%. This is showing that 

improvements in contact recovery are mainly achieved by using EPR accessibility restraints in 

the structure prediction process. The average γ20 and γ40 over all twenty-nine proteins for 

structure prediction without EPR restraints were 5% and 3%. By using EPR accessibility 

restraints, the values could be improved to 12% and 6%, respectively.  

For the six multimeric proteins, improvements in contact recovery by the usage of EPR 

accessibility restraints are observed as φ10, γ20 and γ40 could be increased to 46%, 25%, and 16% 

from the previous values of 38%, 17% and 14% when performing protein structure prediction 
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without EPR data. By complementing the accessibility with distance restraints φ10, γ20 and γ40 can 

be improved to 50%, 30%, and 16%. 

Figure 4 

EPR specific scores select for accurate models of membrane proteins 

The ability of EPR specific scores to select for accurate models is tested by calculating 

enrichment values for structure prediction trials of twenty-nine membrane proteins (Table II). 

The enrichment of a scoring function indicates how well the score identifies a protein model that 

is accurate by a good score. It computed as the cardinality of the intersection � = ��	⋂	 with  

being the set of the accurate models and �� being the set of the 10% of the models with the most 

favorable score (see Methods for details)42. Accurate is defined as the 10% of the models with 

the lowest RMSD100 when compared to the experimentally determined structure. Therefore, if a 

score correctly identifies all accurate models as being accurate, a perfect enrichment would give 

a value of 10.0. 

Enrichment values are computed for the protein models created without experimental restraints. 

For protein structure prediction without EPR data, the average enrichment value for just the 

knowledge-based potentials over all twenty-nine proteins is 1.3. By using EPR distance and 

accessibility data, the average enrichment is improved to 2.5. The enrichment for using EPR 

distance and accessibility restraints ranges from 1.1 to 6.2. In seventeen out of twenty-nine cases, 

the enrichment is greater than 2.0. In twenty-three out of twenty-nine cases the enrichment could 

be improved by at least 0.5 (Table II). By using EPR accessibility data only the average 

enrichment over all proteins is 1.6, showing that improvements regarding the selection of the 

most accurate models is mainly caused by EPR distance restraints. 
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The number of restraints determines the significance of improvements in sampling 

accuracy 

For four proteins, the influence of varying numbers of restraints was examined. In addition to the 

one restraint per five residues within SSEs setup used for all benchmark cases, the tertiary 

structure of 1OCC, 1PV6, 1PY6, and 1RHZ was predicted using one restraint per ten residues, 

one restraint per three residues, and one restraint per two residues within SSEs. For 1PY6 the 

sampling accuracy could be steadily improved with an increasing number of restraints shown by 

τ8 values increasing from 15% to 20% to 24% to 28% to 33% (Table S2 and Figure S1) and µ10 

values improving from 4.4Å to 4.2Å to 3.6Å to 3.5Å to 3.3Å for structure prediction without 

restraints, one restraint per ten residues, one restraint per five residues, one restraint per three 

residues and one restraint per two residues. For 1OCC, 1PV6 and 1RHZ a significant 

improvement in sampling accuracy is observed for using one restraint per three residues instead 

of one restraint per ten residues within SSEs which is shown by improvements in τ8 values from 

42% to 53%, 8% to 36% and 6% to 22% and in µ10 values from 3.2Å to 1.9Å, 5.3Å to 4.3Å and 

4.7Å to 3.3Å. Increasing the number of restraints to one per two residues within SSEs fails to 

further improve the sampling accuracy. We attribute this observation to significant bends in 

some of the SSEs that are currently not sampled sufficiently dense by BCL::MP-Fold. 

Using experimentally obtained EPR distance restraints for rhodopsin 

The benchmark was extended to also contain rhodopsin (protein data bank entry 1GZM) for 

which EPR distance measurements were available23. While only sixteen EPR distance restraints 

were available, which amounts to less than one restraint per ten residues within SSEs, the 

sampling accuracy as well as the enrichment improve significantly. The µ10 values improved 

from 4.9Å for folding without restraints to 4.4Å when using restraints. The enrichment values 
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could be improved from 0.6 to 1.2 showing that even a small number of restraints improves 

discrimination of incorrect models. 

Discussion 

EPR distance and accessibility restraints can aid the prediction of membrane protein structure. 

For this purpose, EPR specific scores were coupled with the protein structure prediction method 

BCL::MP-Fold. BCL::MP-Fold assembles predicted SSEs in space without explicitly modeling 

the SSE connecting loop regions. This allows for rapid sampling of complex topology that is not 

easily achieved when an intact protein backbone must be maintained. By adding EPR specific 

scores to the knowledge-based scoring function, sampling of accurate structures is increased. 

Additionally the selection of the most accurate models could be improved significantly. 

However it has to be clearly stated that – with the exception of bovine rhodopsin (1GZM) – all 

EPR restraints used in this study were simulated using the cone-model. Therefore, the relevance 

of our findings depends on how well the cone-model describes the nature of experimental DEER 

measurements and in particular the mobility of the spin label.  

EPR distance scores improve the accuracy of topologies predicted for membrane 

proteins 

EPR distance measurements are associated with large uncertainties in relating the measured spin 

label – spin label distance into backbone distances. In spite of this, EPR distance measurements 

provide important data on membrane protein structures22–24,45. In the present study, it has been 

shown that EPR distance data can significantly increase the frequency with which the correct 

topology of a membrane protein is sampled (Figure 5 and Figure S2). This is important because 
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as the correct topologies are sampled with higher accuracy, models start to reach the point where 

they can be subjected to atomic detail refinement to further increase their accuracy46. 

It is crucial to distinguish between the two major challenges in de novo structure prediction – 

sampling and scoring: The average improvement in sampling accuracy – i.e. the best model built 

among 5000 independent folding trajectories – of 0.8Å is moderate but significant. However, 

inclusion of the EPR data does not only allow folding of models that are more accurate, it greatly 

improves discrimination of incorrect models with a scoring function that combines BCL 

knowledge-based potentials and EPR restraints. Without using EPR restraints the average 

enrichment is 1.3, i.e. 13% of the most accurate models are in a sample of 10% best scoring 

models, which is close to chance. By using EPR data in addition to the knowledge-based score 

enrichment increases to 2.5, i.e. one out of four models in the 10% best scoring models also has 

the correct fold. This is important as it greatly improves the chance to identify correctly folded 

models, e.g. through clustering of good-scoring models. The combination of improved sampling 

and discrimination thereby significantly improves the reliability with which were able to predict 

the tertiary structure of a protein. 

The EPR distance data used for the present study is simulated from known experimental 

structures. It will be interesting to repeat this benchmark once sufficiently dense experimental 

datasets for several membrane proteins become available. For now, considerable effort was put 

forth to ensure that the simulated data mimics what would be obtained from a true EPR 

experiment, so that any results are unbiased by the simulated data. The previously published 

method for selecting distance restraints was used to create ten different datasets per protein39. 

This ensures results are not biased by a particularly selected dataset. Previously, the uncertainty 

in the difference between spin label distances and the corresponding Cβ distance (DSL - DBB) was 
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accounted for in simulated distance restraints by adding a random value between 12.5Å and -

2.5Å39. Here, the probability of observing a given DSL - DBB is used to determine the amount that 

should be added to the Cβ - Cβ distance measured from the experimental structure.  

Using a method developed for soluble proteins to select restraints for membrane proteins is not 

necessarily ideal. The constraints already imposed upon membrane proteins by the membrane 

geometry suggest that optimized methods for selecting restraints for membrane proteins should 

be developed. One such strategy could be to measure distances between transmembrane 

segments on the same side of the membrane, with the assumption that transmembrane helices are 

mostly rigid, parallel structures. Further, additional work is needed to account for topologically 

important SSEs that do not span the membrane, as well take into account the deviations of 

transmembrane segments from ideal geometries. 

The improved sampling accuracy in the protein structure prediction process is primarily caused 

by the distance restraints. While by using EPR accessibility restraints the average µ10 over all 

twenty-nine proteins drops from 6.0Å to 5.8Å, by using EPR distance restraints µ10 can be 

improved to 5.1Å. 

Figure 5 

Improved secondary structure predictions will improve the accuracy of predicted 

structures 

The SSE pools are created in order to reduce the possibility of missing a SSE, which is generally 

a successful approach as demonstrated previously for soluble proteins33. The helical 

transmembrane span prediction software Octopus47 is used in conjunction with Jufo9D48. Jufo9D 
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provides predictions for SSEs that do not necessarily span the membrane and therefore will not 

be predicted by Octopus. Improved secondary structure prediction methods will benefit 

membrane protein structure prediction. In addition, it has been demonstrated that the pattern of 

accessibility values for measurements along a sequence follow the periodicity of the SSE on 

which they are measured17,22,45. Measured accessibility profiles could therefore be used to inform 

the pool of SSEs used for structure prediction. 

The pool of SSEs used to assemble the membrane protein topologies is the most important 

determinant in successfully predicting the membrane proteins’ structure. This is seen for 1U19 

and 2BL2. With predicted SSEs, the structure of the two proteins can be sampled to a µ10 of 5.9Å 

and 6.2Å respectively (Table III). By using SSE definitions extracted from the experimentally 

determined structure, the proteins can be sampled at µ10 values of 4.4Å and 2.6Å. This is caused 

by secondary structure prediction methods breaking up transmembrane helices into several short 

helices making it harder to assemble the tertiary structure that does not have loop going through 

the membrane. The experiment was repeated with SSE definitions obtained from the 

experimentally determined structures of the proteins. While with predicted SSEs average µ10, τ4 

and τ8 values of 5.0Å, 6% and 19% are achieved over all twenty-nine proteins, by using the SSE 

definitions from the experimentally determined structure we could improve them to 4.5Å, 8% 

and 25%. In twenty-one out of twenty-nine cases the average accuracy of the ten best models by 

RMSD100 could be improved by using SSE definitions obtained from the experimentally 

determined structure (Figure 3). This shows that further improvements of the secondary structure 

prediction will also lead to an improved sampling accuracy of BCL::Fold. 

Limitations of the cone model knowledge-based potential 
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The unknown label conformation is taken into account by the motion-on-a-cone model, which 

yields a DSL - DBB distribution. This wide probability distribution accounts for two inherently 

different aspects – a structural and a dynamical: The structural effect looks at the relative 

position of the unpaired electron with respect to the protein backbone. This positioning is 

dependent on the protein structure, specifically the direction in which the Cα - Cβ vector project 

into space with respect to the Cα - Cα vector that links the two labeling site. As the cone model is 

applied in a model-independent fashion, it does not consider these geometric features but 

expresses the resulting ambiguity as part of the probability distribution. Second, chemical 

environment and exposure cause variable levels of spin label dynamics. These result in distance 

distributions of variable tightness in EPR experiments. This information is currently not 

considered as parameter in the cone model but absorbed by using a very wide DSL - DBB 

probability distribution. This approach has the advantage that it is very robust with respect to 

uncertainties within the EPR experimental parameters and very fast to compute. At the same 

time, the cone model knowledge-based potential neglects important geometric parameters. 

Developing and testing approaches that take these parameters into account and lead to tighter 

distance distributions without losing the advantages of speed and robustness is an active area of 

our research. 

Not considering geometrical features hinders the selection of accurate models for 1U19. EPR 

distance restraints improved the sampling accuracy, but it is still not possible to reliably select 

accurate models (Figure 4). While the distances observed in EPR experiments are typically long 

and therefore allow a broad range of topologically different models to fulfill them, inaccuracies 

in the translation from DSL to DBB also contribute to the selection problem. In the case of 1U19 

the experimentally determined structure, which served as the template for the simulation of the 
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EPR distance restraints, shows a worse agreement with the restraints than the best scoring 

models. The spin-spin distance between residue 7 and residue 170 is 43.6Å while the distance 

between the Cβ atoms is 35.7Å resulting in an agreement score of 0.3 on a scale from 0 to 1. By 

the EPR potential a Cβ - Cβ distance of 41.1Å is favorable which is accomplished by the sampled 

models with the best score leading to the selection of models, which deviate significantly, from 

the experimentally determined structure. Both spin-labeling sites are exposed, indicating they are 

at the outside of the protein. The projection angle between the Cα - Cβ vectors is greater than 

160° making it more likely that the spin labels are pointing away from each other. Those two 

properties allow the inference that we would expect are larger difference between DSL and DBB 

than 2.5Å. By using a knowledge- based potential, which also takes the exposure of the spin 

labeling sites and additional geometrical information into account a better ranking of the sampled 

models would be possible. 

Ambiguities in the ranking of models remain 

While the usage of restraints obtained from EPR experiments significantly improves the 

discrimination of incorrect models, ambiguities in the ranking of the models remain for multiple 

proteins in the benchmark set. This observation was especially pronounced for the proteins 1J4N, 

1PV6, 1PY6, and 1U19 (Figure 5). In those cases, the best 10% of the models by BCL score 

cover a wide range of topologies. For 1PV6, the best 10% of the models by BCL score cover an 

RMSD100 range of 8Å when compared to the experimentally determined structure. Multiple 

factors are contributing to this observation. First, the BCL::Fold scoring function is an inaccurate 

approximation of free energy, which limits its discriminative power42. While adding a term that 

measures agreement with experimental data will improve its discriminative power, it appears that 

sparse restraints from EPR data are sometimes insufficient to remove all ambiguities. This is also 
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because, second, the translation of spin-label distance distributions into a backbone structural 

restraint introduces a substantial uncertainty and therefore allows sometimes multiple topologies 

to fulfill the restraint. One side effect of these approximations is that as shown in Figure 5 the 

native structure is not always in the global minimum of the BCL scoring function. Relaxing the 

experimentally determined protein structures in the BCL force field indicate that the closest 

minimum in the scoring function is between 1.5Å and 4.1Å in RMSD100 separate relative to the 

experimentally determined structures. 

Conclusion 

The determination of membrane protein folds from EPR distance and accessibility data is within 

reach if these restraints aid protein folding protocols such as BCL::MP-Fold. The ability of EPR 

data to improve the sampling of native-like topologies and the importance of EPR accessibility 

data for obtaining highest contact recovery values was demonstrated. Further, the EPR specific 

scores allow the selection of close-to-native models, thereby overcoming a major obstacle in de 

novo protein structure prediction. Refining EPR distance potentials to also take the exposure of 

the spin labelling sites as well as relative orientation of the Cα - Cβ vector might provide a more 

accurate translation from spin-spin distance into backbone distance, thereby further increasing 

model quality. 
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Figure legends 

Translation from EPR data into structural restraints 

Figure 1: EPR distance measurements measure distances between residues in a protein indirectly. 

While the experiment determined the spin-spin distance (DSL), a distance between the backbone 

atoms (DBB) is needed during the de novo protein structure prediction process. Therefore, a 

translation from DSL to DBB is necessary. BCL::Fold uses a knowledge-based potential to 

evaluate the agreement of the distance between the Cβ-atoms in the model with the 

experimentally determined spin-spin distances (B). EPR accessibility data is translated into 

structural restraints by summing up the hydrophobic moment vectors (Cα-atom to Cβ-atom) of 

four consequtive residues (C). This is done twice: first the normalized Cα - Cβ vectors are 

multiplied with the accessibility determined in the EPR experiment, the second time they are 

multiplied with the neighbor count of the residue in the model. The vectors are summed up for 

each approach and the projection angle between the two resulting vectors is scored, with an angle 

of 0° being the best and 180° being the worst agreement (D). 

Structure prediction protocol 

Figure 2: BCL::Fold assembles predicted secondary structure elements (SSEs) in the three-

dimensional space to predict the tertiary structure of a protein. In a first step, the secondary 

structure is predicted using a consensus of several SSE prediction methods like Octopus and 

JUFO9D (A). Consequently, the predicted SSEs are added to the model and transformed using a 

Monte Carlo algorithm (B). The outcome of each transformation is evaluated with knowledge-
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based potential functions scoring SSE packing, radius of gyration, amino acid exposure, and 

amino acid pairing, loop closure geometry, secondary structure length and content, SSE clashes 

and the agreement of the model with the provided EPR distance and accessibility restraints (C). 

Based on the difference in score between the model before and the model after applying the 

transformation the outcome is either accepted or rejected (D). This process is repeated until a 

specified number of iterations or a maximum number of steps without score improvement is 

reached. The resulting models are then ranked based on their score according to the knowledge-

based potential functions (E). 

Sampling accuracy, contact recovery, and enrichment results 

Figure 3: By using EPR distance and accessibility data in the structure prediction process, the 

sampling accuracy can be improved significantly for monomeric (circles) as well as oligomeric 

(squares) proteins (A). The sampling accuracy could be improved in twenty-five out of twenty-

nine cases by using EPR distance and accessibility data, which is shown in by comparing the 

average RMSD100 values of the 1% most accurate models predicted without (x-axis) and with 

EPR data (y-axis) in (A). Adding protein specific structural information in the form of EPR 

distance and accessibility restraints also improves our ability to select the most accurate models 

among the sample ones. In each of the twenty-nine cases, EPR distance and accessibility 

restraints enable us to select more accurate models when compared to structure prediction 

without EPR data available. Shown are the average (line) and best (dot/square) RMSD100 values 

of the best 1% models by BCL score with (y-axis) and without (x-axis) EPR restraints (B). By 

using EPR accessibility data only (y-axis) the Contact Recovery could be improved in twenty-

two out of twenty-nine cases (C) when compared to structure prediction without EPR 

accessibility restraints (x-axis). Improvements in secondary structure element (SSE) prediction 
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methods would also lead to improved sampling accuracies (D, see also Table S1). In twenty-one 

out of twenty-nine cases the average RMSD100 of the ten most accurate models could be 

improved by using SSE definitions obtained from the experimentally determined structure (y-

axis) compared to using a predicted SSEs. 

Limitations of the CONE model 

Figure 4: For 1U19, the most accurate model cannot be reliably selected (A). One reason for that 

is, that the translation from the observed spin-spin distance to the backbone distance is inaccurate 

resulting in models which deviate topologically from the experimentally determined structure 

achieving a better agreement with the EPR distance restraints than the experimentally determined 

structure (B, two SSEs were removed to improve readability). This is demonstrated by the plot 

showing the correlation between the agreement with the EPR distance restraints (y-axis) and the 

RMSD100 relative to the experimentally determined structure (x-axis). The EPR potential does 

not take the exposure of the spin labelling site and the orientation of the CαCβ vectors into 

account leading to inaccuracies when translating DSL into DBB for the residues 7 and 170 of 

1U19. Both spin labels are at the outside of the protein and on different sides of the structure 

leading to greater difference between DSL and DBB. 

Gallery of the structure prediction results 

Figure 5: By using EPR distance and accessibility restraints, the sampling accuracy is 

significantly improved as the selection ability regarding accurate models. For selected proteins a 

comparison of the RMSD100 (column A) and Contact Recovery (column B) distributions for 

sampling with (red) and without (black) EPR restraints is shown. The y-axis of column A shows 

the cumulative density of models with respect to the RMSD100. The y-axis of column B shows 
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the cumulative density of models with respect to their contact recovery. Column C shows the 

correlation between the BCL score and the RMSD100 for the models sampled with EPR 

restraints (black dots) and the experimentally determined structure (red dot). The y-axis is the 

pseudo-energy score the algorithm assigned to the structure; the x-axis is the RMSD100 relative 

to the experimentally determined structure. The superimpositions show the best models by 

RMSD100 for folding with EPR restraints (column D), the best model by pseudo-energy score 

for folding with EPR restraints (column E), and the best model by pseudo-energy score for 

folding without EPR restraints (column F) superimposed with the experimentally determined 

structure (grey). 

Table legends 

The proteins used for benchmarking the algorithm 

Table I: The twenty-nine proteins for the benchmark were chosen to cover a wide range of 

sequence length, number of secondary structure elements (SSEs) as well as number and 

percentage of residues within SSEs while having a mutual sequence identity of less than 20%. 

The columns denote the sequence length, the number of SSEs, the number of residues within 

SSEs, and the percentage of the residues is within SSEs. The proteins above the separating line 

are monomeric proteins; below the separating line are multimeric proteins. 2HAC, 2ZY9, and 

3CAP are homo-dimers, 2BHW and 2H8A are homo-trimers, and 2L35 is a hetero-dimer. 1GZM 

was additionally included for the usage of experimentally determined data. 

Enrichments achieved for folding with and without EPR restraints 

Table II: EPR restraints significantly improve our ability to select the most accurate models 

among the sampled ones. When using EPR distance and accessibility restraints the enrichment 
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(EEPR) could be improved in each case compared to structure prediction without EPR data 

(ENone). To be independent from specific spin labeling patterns ten different EPR distance 

restraint sets were used and the standard deviation regarding enrichment computed (σEPR). The 

experiment was also conducted using accessibility (EAcc) and distance restraints (EDist and σDist) 

only. In addition to using predicted secondary structure elements (Predicted Pool), the 

experiment was repeated using secondary structure elements obtained from the experimentally 

determined structure (Native Pool). 

Sampling accuracy comparison for folding with and without EPR restraints 

 Table III: Results for folding the proteins based on predicted secondary structure elements 

without restraints, with accessibility restraints only, with distance restraints only and with 

accessibility and distance restraints. Shown are the RMSD100 of the most accurate model 

sampled (best), the average RMSD100 of the ten most accurate models (µ10) as well as the 

percentage of the sampled models with RMSD100 values of less than 4Å and 8Å (τ4 and τ8). 

Using protein specific data derived from EPR experiments significantly improves the sampling 

accuracy. The improvement is mainly caused by using EPR distance restraints; accessibility 

restraints have a minor effect on the sampling accuracy. 

Contact recovery comparison for folding with and without EPR restraints 

Table IV: The usage of EPR accessibility restraints significantly increases the percentage of 

recovered contacts (amino acids that are separated by at least six residues and have a maximum 

Euclidean distance of 8Å in the experimentally determined structure). Shown are the highest 

contact recovery achieved (best), the average contact recovery of the ten models with the highest 

contact recovery (φ10) and the percentage of models for which more than 20% and 40% of the 

contacts were recovered (γ20, γ40). 
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Table I 

PDBID length # SSE # resSSE % resSSE source resolution[Å] 
1IWG 168 5 152 90 X-Ray (PDB) 3.5 
1GZM 349 7 216 62 X-Ray (PDB) 2.7 
1J4N 116 4 93 80 X-Ray (PDB) 2.2 
1KPL 203 8 155 76 X-Ray (PDB) 3.0 
1OCC 191 5 142 74 X-Ray (PDB) 2.8 
1OKC 297 9 211 71 X-Ray (PDB) 2.2 
1PV6 189 8 165 87 X-Ray (PDB) 3.5 
1PY6 227 9 171 75 X-Ray (PDB) 1.8 
1RHZ 166 5 108 65 X-Ray (PDB) 3.5 
1U19 278 7 183 66 X-Ray (PDB) 2.2 
1XME 568 18 439 79 X-Ray (PDB) 2.3 
2BG9 91 3 79 87 EM (PDB)  
2BL2 145 4 127 88 X-Ray (PDB) 2.1 
2BS2 217 8 174 80 X-Ray (PDB) 1.8 
2IC8 182 7 123 68 X-Ray (PDB) 2.1 
2K73 164 5 102 62 NMR (PDB)  
2KSF 107 4 69 64 NMR (PDB)  
2KSY 223 7 174 78 NMR (PDB)  
2NR9 196 8 147 75 X-Ray (PDB) 2.2 
2XUT 524 16 377 72 X-Ray (PDB) 3.6 
3GIA 433 15 352 81 X-Ray (PDB) 2.2 
3KCU 285 10 190 67 X-Ray (PDB) 2.2 
3KJ6 366 8 171 47 X-Ray (PDB) 3.4 
3P5N 189 6 132 70 X-Ray (PDB) 3.6 
2BHW 669 12 303 45 X-Ray (PDB) 2.5 
2H8A 363 12 285 79 EM (PDB) 3.2 
2HAC 66 2 52 79 NMR  
2L35 95 3 77 81 NMR (PDB)  
2ZY9 344 16 310 90 X-Ray (PDB) 2.9 
3CAP 696 18 474 68 NMR 2.9 
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Table II 

 Predicted Pool Native Pool 
Target ENone EAcc EDist σDist EEPR σEPR ENone EAcc EDist σDist EEPR σEPR 

1IWG 1.1 1.5 2.2 0.2 2.3 0.2 0.4 0.9 1.2 0.4 2.2 0.3 

1J4N 0.4 0.3 1.7 0.2 1.8 0.2 0.5 0.6 0.9 0.2 1.7 0.3 

1KPL 2.2 2.4 2.4 0.1 2.4 0.3 0.3 0.3 2.4 0.4 2.4 0.2 

1OCC 1.5 1.5 4.0 1.0 5.1 1.0 1.8 1.8 3.9 1.0 5.0 1.0 

1OKC 1.3 1.4 1.7 0.2 1.7 0.2 1.3 1.4 1.5 0.1 1.7 0.2 

1PV6 1.2 1.3 1.9 0.2 1.9 0.3 0.5 1.0 1.7 0.4 2.0 0.3 

1PY6 2.1 2.0 3.2 0.3 3.3 0.3 2.3 2.3 3.2 0.3 3.3 0.3 

1RHZ 1.1 1.3 1.8 0.4 2.1 0.6 1.3 1.4 1.6 0.4 1.4 0.7 

1U19 1.6 2.2 2.6 0.2 2.6 0.2 2.0 1.7 2.0 0.3 2.9 0.7 

1XME 1.4 1.3 1.7 0.3 1.7 0.3 1.1 1.0 1.7 0.3 3.6 0.5 

2BG9 0.9 1.8 2.5 0.5 2.5 0.4 1.6 2.7 1.6 0.6 1.9 0.8 

2BL2 0.5 0.5 1.4 0.3 1.4 0.3 1.1 0.7 3.1 0.5 4.9 1.0 

2BS2 2.0 2.0 2.6 0.2 2.6 0.1 1.9 2.3 2.4 0.3 2.8 0.3 

2IC8 1.0 1.2 1.6 0.3 1.7 0.2 1.2 1.2 1.7 0.3 2.8 0.7 

2K73 2.1 1.5 1.6 0.6 2.1 0.2 2.2 2.4 2.8 0.6 7.8 0.7 

2KSF 2.6 2.5 2.4 0.8 2.6 0.7 3.8 3.2 2.1 0.7 2.3 0.7 

2KSY 1.7 2.2 2.6 0.7 3.0 0.6 2.3 2.0 3.3 0.6 3.8 1.1 

2NR9 0.8 0.9 1.0 0.2 1.1 0.2 1.6 1.2 1.5 0.3 1.9 0.2 

2XUT 1.2 1.3 1.6 0.2 1.6 0.2 0.5 0.5 1.3 0.2 2.1 0.3 

3GIA 0.7 0.7 1.2 0.2 1.2 0.2 0.5 0.6 0.8 0.2 0.5 0.1 

3KCU 0.8 1.5 1.6 0.2 1.7 0.2 1.3 1.1 1.6 0.2 1.8 0.5 

3KJ6 1.6 2.0 2.3 0.2 2.2 0.2 1.4 1.7 2.0 0.3 4.2 0.8 

3P5N 0.8 1.3 1.5 0.3 1.6 0.3 1.3 1.1 1.7 0.3 2.3 0.8 

2BHW 0.8 0.9 2.1 0.6 2.3 0.5 1.2 1.7 3.9 1.2 4.4 1.7 

2H8A 2.1 2.4 6.3 0.4 6.2 0.7 1.6 2.1 5.8 0.9 7.2 0.9 

2HAC 0.8 2.8 3.4 0.6 4.0 0.9 0.5 2.4 1.2 0.2 2.5 0.7 

2L35 0.8 1.7 1.9 0.7 1.9 0.7 0.8 1.0 2.3 0.9 2.6 1.2 

2ZY9 0.7 2.3 2.4 0.2 2.9 0.3 1.0 1.4 2.0 0.4 3.1 0.4 

3CAP 1.3 1.8 3.3 0.4 3.7 0.4 1.7 2.2 3.1 0.8 3.8 0.2 

Ø 1.3 1.6 2.3 0.3 2.5 0.4 1.4 1.5 2.2 0.5 3.1 0.6 
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Table III 

 None Accessibility Distance Distance + Accessibility 
Target best µ10 τ4 τ8 best µ10 τ4 τ8 best µ10 τ4 τ8 best µ10 τ4 τ8 
1IWG 4.2 4.9 0.0 19.1 3.9 4.3 0.1 26.3 3.8 4.4 0.0 22.1 3.6 4.2 0.1 25.8 
1J4N 5.2 5.3 0.0 18.0 4.2 4.7 0.0 22.5 4.4 4.8 0.0 21.0 3.8 4.3 0.0 25.4 
1KPL 10.1 10.3 0.0 0.0 8.8 9.6 0.0 0.0 8.5 9.4 0.0 0.0 8.5 9.3 0.0 0.0 
1OCC 3.7 4.5 0.0 20.1 2.2 2.9 0.8 30.2 2.4 2.8 3.1 44.9 2.0 2.3 7.0 50.8 
1OKC 6.4 6.8 0.0 1.2 8.2 8.8 0.0 0.0 7.1 7.8 0.0 0.1 6.9 7.7 0.0 0.2 
1PV6 5.2 6.1 0.0 5.3 5.3 5.8 0.0 6.0 5.2 5.7 0.0 8.5 4.9 5.5 0.0 10.5 
1PY6 4.4 5.1 0.0 15.2 3.9 4.3 0.0 17.5 3.6 4.2 0.1 24.2 3.3 3.8 0.2 26.7 
1RHZ 5.6 5.9 0.0 2.1 5.5 5.7 0.0 1.9 4.2 4.7 0.0 5.6 3.9 4.4 0.0 7.0 
1U19 5.3 5.7 0.0 4.7 5.4 6.1 0.0 3.0 5.5 6.2 0.0 3.6 5.2 5.9 0.0 4.1 
1XME 8.0 8.7 0.0 0.0 8.1 8.7 0.0 0.0 7.3 7.8 0.0 0.2 7.2 7.8 0.0 0.2 
2BG9 2.3 2.6 10.8 52.7 2.2 2.3 28.1 51.3 2.2 2.3 28.1 57.7 2.1 2.2 32.6 61.3 
2BL2 7.5 8.4 0.0 0.0 7.8 8.4 0.0 0.0 5.0 6.1 0.0 0.9 5.1 6.2 0.0 0.8 
2BS2 6.1 6.3 0.0 2.4 6.3 6.6 0.0 1.8 5.3 5.9 0.0 3.5 5.2 5.8 0.0 3.5 
2IC8 5.5 6.1 0.0 4.7 6.0 6.2 0.0 4.2 5.0 5.5 0.0 9.8 5.1 5.5 0.0 9.4 
2K73 3.3 3.6 0.5 24.8 3.3 3.5 0.7 21.4 2.7 3.0 3.4 30.1 2.8 3.1 3.3 30.0 
2KSF 4.1 4.4 0.0 22.3 2.6 3.0 2.6 21.9 2.9 3.1 5.2 25.9 2.7 2.9 8.3 25.1 
2KSY 4.9 5.3 0.0 11.2 3.7 4.5 0.0 13.4 3.5 4.1 0.1 21.4 3.6 4.1 0.1 20.4 
2NR9 5.6 6.0 0.0 5.8 6.0 6.6 0.0 3.4 6.4 6.9 0.0 2.5 6.4 6.9 0.0 2.5 
2XUT 7.7 8.5 0.0 0.0 7.5 8.4 0.0 0.0 7.7 8.2 0.0 0.1 7.7 8.2 0.0 0.1 
3GIA 10.0 10.2 0.0 0.0 9.5 9.8 0.0 0.0 9.1 9.6 0.0 0.0 9.1 9.6 0.0 0.0 
3KCU 7.0 7.5 0.0 0.3 7.7 8.1 0.0 0.0 6.3 7.2 0.0 0.6 6.5 7.3 0.0 0.4 
3KJ6 6.6 7.0 0.0 0.7 4.9 6.4 0.0 1.0 5.2 5.9 0.0 3.0 4.9 5.8 0.0 3.0 
3P5N 4.6 5.8 0.0 5.5 5.3 5.8 0.0 4.5 4.8 5.6 0.0 10.2 4.8 5.6 0.0 10.0 
2BHW 7.4 7.8 0.0 0.2 6.9 7.4 0.0 0.3 3.0 3.4 0.9 31.7 2.9 3.4 0.9 31.2 
2H8A 3.3 3.9 0.1 32.5 3.1 3.8 0.2 34.5 1.9 2.1 6.4 41.7 1.8 2.0 7.6 44.3 
2HAC 1.3 1.4 75.3 89.6 1.3 1.4 83.7 94.8 1.3 1.5 71.8 92.1 1.3 1.5 87.0 96.8 
2L35 2.6 2.9 4.5 19.8 1.7 1.8 17.1 22.4 1.9 2.1 31.0 48.3 1.9 2.1 31.0 48.3 
2ZY9 4.7 5.7 0.0 3.4 4.5 5.5 0.0 4.4 2.7 3.3 0.4 21.4 2.8 3.4 0.3 20.9 
3CAP 7.4 8.0 0.0 0.1 7.3 7.9 0.0 0.1 4.9 5.4 0.0 5.8 4.7 5.3 0.0 4.1 

Ø 5.5 6.0 3.0 12.5 5.3 5.8 4.6 13.3 4.6 5.1 5.2 18.0 4.5 5.0 6.2 19.4 
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Table IV  

 

 None Accessibility Distance Distance + Accessibility 
Target best φ10 γ20 γ40 best φ10 γ20 γ40 best φ10 γ20 γ40 best φ10 γ20 γ40 

1IWG 23.7 21.3 0.2 0.0 33.5 29.4 2.0 0.0 31.3 26.9 1.2 0.0 33.8 28.3 2.9 0.0 
1J4N 31.6 28.7 2.7 0.0 45.9 39.7 13.5 0.1 40.5 36.8 11.2 0.0 44.8 39.8 22.5 0.3 
1KPL 22.8 14.4 0.0 0.0 18.7 15.5 0.0 0.0 19.0 15.6 0.0 0.0 18.4 16.1 0.0 0.0 
1OCC 44.0 34.3 1.7 0.0 77.1 57.8 20.7 1.1 63.0 55.9 15.4 1.5 66.1 59.4 25.6 4.6 
1OKC 15.4 11.0 0.0 0.0 22.0 16.4 0.0 0.0 19.5 16.4 0.0 0.0 19.8 17.6 0.0 0.0 
1PV6 19.6 13.9 0.0 0.0 23.6 20.6 0.1 0.0 22.1 19.0 0.1 0.0 22.7 19.5 0.1 0.0 
1PY6 21.0 19.1 0.0 0.0 35.1 30.4 2.2 0.0 32.8 27.4 1.4 0.0 36.0 31.1 3.5 0.0 
1RHZ 33.0 29.2 1.6 0.0 38.1 35.1 6.2 0.0 41.9 36.0 7.0 0.1 41.8 37.2 11.3 0.2 
1U19 25.4 17.3 0.0 0.0 25.8 22.7 0.2 0.0 21.9 18.4 0.0 0.0 23.8 19.0 0.1 0.0 
1XME 10.0 8.5 0.0 0.0 10.6 9.2 0.0 0.0 9.6 8.3 0.0 0.0 10.1 8.8 0.0 0.0 
2BG9 79.5 73.9 37.5 5.4 95.5 90.9 93.0 52.2 84.1 78.2 51.2 16.5 92.5 87.8 78.3 40.6 
2BL2 18.3 14.8 0.0 0.0 25.7 20.9 0.1 0.0 31.7 23.9 0.2 0.0 28.7 23.0 0.3 0.0 
2BS2 23.9 21.7 0.3 0.0 32.5 28.9 1.0 0.0 27.6 24.8 0.4 0.0 34.2 28.8 1.2 0.0 
2IC8 27.4 21.8 0.2 0.0 29.9 26.2 1.0 0.0 26.2 23.4 0.3 0.0 34.5 29.0 2.1 0.0 
2K73 44.2 39.8 6.5 0.1 65.1 60.3 37.2 3.7 52.3 47.8 14.0 0.5 65.8 60.7 38.5 6.7 
2KSF 47.2 37.0 4.1 0.0 73.6 66.6 28.6 3.4 58.5 53.0 16.6 0.8 71.5 65.2 35.9 6.6 
2KSY 29.6 22.2 0.2 0.0 37.6 31.5 3.3 0.0 38.8 28.9 1.4 0.0 37.7 31.5 2.9 0.0 
2NR9 24.1 20.0 0.1 0.0 27.4 22.7 0.4 0.0 25.1 20.9 0.1 0.0 24.4 23.4 0.3 0.0 
2XUT 9.8 9.0 0.0 0.0 12.3 10.0 0.0 0.0 10.0 9.7 0.0 0.0 10.1 8.9 0.0 0.0 
3GIA 7.6 6.5 0.0 0.0 8.3 7.0 0.0 0.0 7.6 6.8 0.0 0.0 7.8 6.5 0.0 0.0 
3KCU 19.1 15.5 0.0 0.0 21.5 18.4 0.0 0.0 21.2 17.6 0.0 0.0 20.3 19.0 0.0 0.0 
3KJ6 18.4 15.9 0.0 0.0 29.5 22.1 0.1 0.0 21.7 19.6 0.1 0.0 25.4 21.8 0.2 0.0 
3P5N 29.8 21.2 0.1 0.0 33.0 29.2 1.2 0.0 30.9 25.3 0.2 0.0 30.9 30.0 0.9 0.0 
2BHW 42.2 36.8 2.3 0.0 46.8 40.0 3.8 0.2 49.5 43.1 4.2 0.2 48.9 42.3 4.4 0.2 
2H8A 28.8 19.5 0.0 0.0 30.9 28.2 1.1 0.0 44.8 40.9 7.2 0.2 49.8 45.7 10.7 0.7 
2HAC 100.0 98.9 87.0 80.4 100.0 98.0 90.9 83.1 99.4 98.0 81.7 73.1 99.4 97.7 82.6 75.2 
2L35 53.2 49.2 11.1 0.5 76.6 73.8 53.2 15.2 49.4 47.3 26.6 0.9 76.0 70.6 79.0 18.9 
2ZY9 16.9 14.2 0.0 0.0 27.1 23.7 0.3 0.0 29.6 24.7 0.3 0.0 36.8 30.9 1.4 0.0 
3CAP 12.7 11.9 0.0 0.0 17.9 14.0 0.0 0.0 14.4 12.3 0.0 0.0 17.5 14.2 2.8 0.0 
Ø 30.3 25.8 5.4 3.0 38.7 34.1  12.4 5.5 35.3 31.3 8.3 3.2 38.9 35.0 14.1 5.3 
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Figure 1  
EPR distance measurements measure distances between residues in a protein indirectly. While the 

experiment determined the spin-spin distance (DSL), a distance between the backbone atoms (DBB) is 

needed during the de novo protein structure prediction process. Therefore, a translation from DSL to DBB is 
necessary. BCL::Fold uses a knowledge-based potential to evaluate the agreement of the distance between 

the Cβ-atoms in the model with the experimentally determined spin-spin distances (B). EPR accessibility 
data is translated into structural restraints by summing up the hydrophobic moment vectors (Cα-atom to 
Cβ-atom) of four consequtive residues (C). This is done twice: first the normalized Cα - Cβ vectors are 

multiplied with the accessibility determined in the EPR experiment, the second time they are multiplied with 
the neighbor count of the residue in the model. The vectors are summed up for each approach and the 

projection angle between the two resulting vectors is scored, with an angle of 0° being the best and 180° 
being the worst agreement (D).  
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Figure 2  
BCL::Fold assembles predicted secondary structure elements (SSEs) in the three-dimensional space to 
predict the tertiary structure of a protein. In a first step, the secondary structure is predicted using a 

consensus of several SSE prediction methods like Octopus and JUFO9D (A). Consequently, the predicted 
SSEs are added to the model and transformed using a Monte Carlo algorithm (B). The outcome of each 
transformation is evaluated with knowledge-based potential functions scoring SSE packing, radius of 

gyration, amino acid exposure, and amino acid pairing, loop closure geometry, secondary structure length 
and content, SSE clashes and the agreement of the model with the provided EPR distance and accessibility 

restraints (C). Based on the difference in score between the model before and the model after applying the 
transformation the outcome is either accepted or rejected (D). This process is repeated until a specified 

number of iterations or a maximum number of steps without score improvement is reached. The resulting 
models are then ranked based on their score according to the knowledge-based potential functions (E).  
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Figure 3  
By using EPR distance and accessibility data in the structure prediction process, the sampling accuracy can 
be improved significantly for monomeric (circles) as well as oligomeric (squares) proteins (A). The sampling 

accuracy could be improved in twenty-five out of twenty-nine cases by using EPR distance and accessibility 
data, which is shown in by comparing the average RMSD100 values of the 1% most accurate models 

predicted without (x-axis) and with EPR data (y-axis) in (A). Adding protein specific structural information in 
the form of EPR distance and accessibility restraints also improves our ability to select the most accurate 
models among the sample ones. In each of the twenty-nine cases, EPR distance and accessibility restraints 
enable us to select more accurate models when compared to structure prediction without EPR data available. 
Shown are the average (line) and best (dot/square) RMSD100 values of the best 1% models by BCL score 
with (y-axis) and without (x-axis) EPR restraints (B). By using EPR accessibility data only (y-axis) the 
Contact Recovery could be improved in twenty-two out of twenty-nine cases (C) when compared to 

structure prediction without EPR accessibility restraints (x-axis). Improvements in secondary structure 
element (SSE) prediction methods would also lead to improved sampling accuracies (D, see also Table S1). 

In twenty-one out of twenty-nine cases the average RMSD100 of the ten most accurate models could be 
improved by using SSE definitions obtained from the experimentally determined structure (y-axis) compared 

to using a predicted SSEs.  
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Figure 4  
For 1U19, the most accurate model cannot be reliably selected (A). One reason for that is, that the 

translation from the observed spin-spin distance to the backbone distance is inaccurate resulting in models 

which deviate topologically from the experimentally determined structure achieving a better agreement with 
the EPR distance restraints than the experimentally determined structure (B, two SSEs were removed to 

improve readability). This is demonstrated by the plot showing the correlation between the agreement with 
the EPR distance restraints (y-axis) and the RMSD100 relative to the experimentally determined structure 
(x-axis). The EPR potential does not take the exposure of the spin labelling site and the orientation of the 

CαCβ vectors into account leading to inaccuracies when translating DSL into DBB for the residues 7 and 170 
of 1U19. Both spin labels are at the outside of the protein and on different sides of the structure leading to 

greater difference between DSL and DBB.  
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Figure 5  
By using EPR distance and accessibility restraints, the sampling accuracy is significantly improved as the 

selection ability regarding accurate models. For selected proteins a comparison of the RMSD100 (column A) 

and Contact Recovery (column B) distributions for sampling with (red) and without (black) EPR restraints is 
shown. The y-axis of column A shows the cumulative density of models with respect to the RMSD100. The y-
axis of column B shows the cumulative density of models with respect to their contact recovery. Column C 
shows the correlation between the BCL score and the RMSD100 for the models sampled with EPR restraints 
(black dots) and the experimentally determined structure (red dot). The y-axis is the pseudo-energy score 

the algorithm assigned to the structure; the x-axis is the RMSD100 relative to the experimentally 
determined structure. The superimpositions show the best models by RMSD100 for folding with EPR 

restraints (column D), the best model by pseudo-energy score for folding with EPR restraints (column E), 
and the best model by pseudo-energy score for folding without EPR restraints (column F) superimposed with 

the experimentally determined structure (grey).  
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