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DRecent advances in understanding the activity and selectivity of kinase inhibitors and their relationships to

protein structure are presented. Conformational selection in kinases is studied from empirical, data-driven and
simulation approaches. Ligand binding and its affinity are, in many cases, determined by the predetermined
active and inactive conformation of kinases. Binding affinity and selectivity predictions highlight the current
state of the art and advances in computational chemistry as it applies to kinase inhibitor discovery. Kinome
wide inhibitor profiling and cell panel profiling lead to a better understanding of selectivity and allow for target
validation and patient tailoring hypotheses. This article is part of a Special Issue entitled: Inhibitors of Protein
Kinases.
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1. Introduction

Understanding the relationship of kinase targets in normal and dis-
ease states and their modulation by inhibitors stands at a crossroads
in the discovery and delivery of new medicines. Overcoming key
challenges such as target selection, pathway modulation, compound
prioritization, understanding toxicity, biomarker selection and patient
tailoring is key to the design of better treatments. Computational sci-
ences, including bio, chemo, and structural informatics are increasingly
indispensable in kinase discovery. Chemical and structural informatics
streamline complexity, finding patterns in large data sets and generat-
ing testable hypotheses for experimentation. Several talks at the confer-
ence reported analyses of large datasets of structural and activity data of
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many compounds tested with many kinases. Alexander Baumann,
Richard Engh and Thibault Varin described platforms for experimental
activity profiling of compounds across large kinase panels, and compu-
tational methods to understand patterns of cross-reactivity across com-
pound, kinase, and cell line dimensions. Eric Martin used arrays of
kinase predictive models to estimate inhibition profiles when experi-
mental data are incomplete or lacking. Henrik Moebitz and Stefan
Knapp evaluated large databases of X-ray structures and compound ac-
tivities to relate protein conformational states to binding affinity. Benoit
Roux used physics-based molecular dynamics simulations rather than
informatics to understanding relative energies of DFG-in and DFG-out
kinase conformations. Valerio Berdini employed a chemistry-based ap-
proach to the conformation problem, building up ligands to DFG-in and
DFG-out conformations from fragment-based starting points. Another
aspect of kinase computation correlates chemical similarity with kinase
potency to predict activity in lieu of or in advance or experiments.
Thibault Varin, Eric Martin and Jens Meiler described ligand-based
kinase inhibition and selectivity models, and their impact on drug dis-
covery projects. In addition to their predictive, explanatory aspects,
computational sciences play an increasing role in experiment design
spanning a range from target hypotheses to compound design. This
l and structural aspects of kinase discovery from IPK2014, Biochim.
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Fig. 1. DFG-plots of two sets of the PDB, post (left, 2171 chains) and pre June 2010 (right, 1909 chains), showing similar distributions of clusters. The main clusters are active (blue), FG-
down (margenta) and G-down (cyan). DFG-out clusters are found above the border of ξ−1 N 100.
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short review will briefly highlight some of these diverse approaches to
computational kinase discovery presented at the conference.

2. Discussion

2.1. Conformation selection

A number of speakers described the interplay between active–inac-
tive kinase conformations, andways to computationally analyze and ad-
dress them. Most kinase can be activated by phosphorylation of the
activation loop, causing a conformational shift of the DFG motif from
the “out” to the “in” positions, bringing the catalytic ASP into position
to interact with phosphates on the ATP andmagnesium ions to perform
phosphate transfer. Henrik Moebitz presented a 3D alignment and
structural clustering of all mammalian kinase X-ray conformations.
The structures formed distinct clusters when plotted in 2 specialized
graphs, a “DFG-plot” and a “Helix-C plot”, according to a few simple geo-
metric criteria. The secret to getting distinct interpretable clusters was
the identification of pseudo DFG torsions formed by sets of 4 consecu-
tive alpha carbons, a measure of the torsion between two consecutive
sidechains. These angles were divided into regions: FG-down/DFG-ac-
tive/G-down, and DFG-in/out. The structures could then be plotted on
the 2 graphs by adding a distance to helix-C, classified as in/dilated/
out. Comparing two subsets of the PDB, prior and post June 2010,
gave similar distributions of clusters (Fig. 1). Analyzing the populations
U
N
C

Fig. 2. Estimation of conformational bias from phosphorylation. Based on the population shift b
timated from these thermodynamic cycles.

Please cite this article as: E. Martin, et al., Perspective on computationa
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Rprovided estimates of the energy differences between kinase conforma-
tional states. One interesting conclusion was that phosphorylation
shifts the relative balance between active and inactive conformation
by 1 kcal/mole on average (Fig. 2). This observation can explain why
type II inhibitors, which bind in the inactive (DFG-out) conformation,
exhibit lower potency (by 10 fold on average), but are measurable in
biochemical (phosphorylated) kinase assays. He also observed that
first-shell polar residues hinder the DFG transition. The research
extends the long standing interest in classification of binding modes of
kinase inhibitors [1].

Aiming to understand energetic and conformational preferences
leading to observed selectivity, Benoit Roux and his co-workers Yen-
Lin Lin and Yilin Meng described free energy molecular dynamic simu-
lations to directly calculate the binding affinity of Imatinib, which in-
hibits Abl and c-Kit, but not c-Src, even though all three have N30%
sequence homology. He drove 2 pseudo dihedrals by umbrella sampling
to get full 2D conformational free energymaps of the unphosphorylated
proteins around the DFG motif region of the activation loop. The maps
showed only 2 stable conformations: DFG-in and DFG-out. According
to the umbrella sampling calculations, Abl kinase appears to be more
stable in the DFG-in conformation by a modest 1.4 kcal/mol, while Src
is more stable in the DGF-in by 5.4 kcal/mol, suggesting that the free
energy cost of the DFG flip between these two kinases could be one de-
terminant of type II selectivity [2]. The team also calculated the affinity
of Imatinib to the binding pocket by using the “alchemical double
etween DFG in and out conformations, the stabilizing effect of phosphorylation can be es-

l and structural aspects of kinase discovery from IPK2014, Biochim.
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decoupling” technique to “annihilate” the inhibitor from solution and
grow it into the protein. They decomposed the total free energy differ-
ence, which agrees well with experiment (Fig. 3), into components by
vanishing and growing the ligand one energy term at a time:first the re-
pulsive part, then the vanderWaals dispersion part, andfinally the elec-
trostatic part. This analysis, in close agreement with experimental data,
correctly concluded that Imatinib binds Abl better, and identified the
van der Waals dispersion term as the dominant energy component. In
addition, the binding of an analog of Gleevec (G6G),which is equally po-
tent for Abl and Src, was investigated and agreement with experiment
in binding affinity was observed [2]. This additional set of free energy
calculations further supported that both conformational selection and
protein–ligand interaction are responsible for the specificity of Gleevec.

Stefan Knapp presented a wide range of experimental studies inves-
tigating compounds which stabilize inactive conformations of kinases.
U
N
C

Fig. 4. Novel binding mode of SCH772984 in ERK2. a: Chemical structure of SCH772984. b: 2F

Please cite this article as: E. Martin, et al., Perspective on computationa
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In collaboration with Nathanael Grays laboratory, he reported that
more than 200 kinases, covering all branches of the kinome, were
found to be inhibited by a small set of type 2 inhibitors, suggesting
that a large fraction of kinases can be targeted by type II inhibitors [3].
Type II inhibitor structures are underrepresented in the protein data
based (PDB) and several type-II inhibitors were co-crystallized with ki-
nases for which no experimental type-II structure has been reported.
These structures included CDK2.

A unique binding mode was reported for the ERK inhibitor
SCH772984, which bound in a so far unreported conformation to
ERK1 and ERK2 (Fig. 4). In this novel bindingmode, whichwould be im-
possible to predict with current computational approaches, the inhibi-
tor induced a binding pocket between the P-loop and αC, forming a
number of hydrogen bonds and aromatic stacking interactionswith res-
idues present in these structural elements. Binding of SCH772984 was
oFc OMIT electron density map contoured at 2σ. c: Details of the interaction in ERK2. C.

l and structural aspects of kinase discovery from IPK2014, Biochim.
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associatedwith slowoff rates in vitro aswell as in cellular assays, where-
as off-targets such as haspin and JNK interacted with the inhibitor in
diverse but canonical type I binding modes and showed fast on and
off-rates. Mutagenesis studies suggested that aromatic stacking interac-
tions of residues located inαC, aswell as the glycine rich loop, were im-
portant for the slow binding kinetics of this inhibitor. The novel binding
pocket may offer an alternative design strategy for type II inhibitors [4].

Valerio Berdini used MELK kinase as an example of how medicinal
chemistry can use fragment starting points to create insights into stabi-
lizing unique kinase conformations [5,6]. From 231 fragments that
showed an effect in a protein melting-point screen, 144 confirmed in
NMR. Subsequent X-ray crystallography showed 20 novel hinge
binders. Isoquinoline fragments were optimized into both highly
U
N
C
O

R
R
E
C
T

Fig. 6. Four modeling methods comprisin

Please cite this article as: E. Martin, et al., Perspective on computationa
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Oefficient (LE = 0.54) type I ligands, and highly potent type II inhibitors.
MELK has a large leucine gate keeper, and traditional type II linkers did
not induce the DFG out conformation. On average, type I fragments and
inhibitors had much higher ligand efficiencies, suggesting that the type
II conformation in MELK is higher energy.

One of the Type I starting points was optimized into a selective Melk
inhibitor that offered conformational selection for the MELK hinge re-
gion [5]. A path from an initial, relatively inefficient 160 μM fragment
with unique binding, to the optimized 37 nM molecule with good
selectivity, involved using a variety of structure based design tools and
computational analog modeling to identify strong interactions with
MELK (Fig. 5). Another approach utilizing the ASTEX structural
informatics platform allowed for the rational design of a 19 nM type II
E

g Protein-Family Virtual Screening.

l and structural aspects of kinase discovery from IPK2014, Biochim.
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inhibitor, although with a less optimal selectivity profile [6]. In this
approach, existing structural fragments of hinge binders, linkers and
positively ionizable groups were combined to stabilize the type II
MELK conformation. Structure-based design was employed together
with computational tools in the course of project evolution.

2.2. Predictive modeling

Predictive models are widely used for virtual screening against ki-
nase targets. Both ligand-based, structure-based and mixed models
are used in an industrial setting to initiate and focus kinase inhibitor
discovery efforts. Kinome-wide profiling data allow the creation and
evaluation of computational models not only for activity but also
selectivity predictions. Thibault Varin presented an application of
U
N
C
O

R
R

Fig. 8. The PLK1, RSK and FAK inhibitors are not fully selective and all inhibit also PLK1. As PLK1 i
cell sensitivity panel profile.

Please cite this article as: E. Martin, et al., Perspective on computationa
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E
D
 Pligand-basedmodels in screening [7] campaigns at Lilly, and the discov-

ery and initial optimization of selective RIO2 kinase inhibitors. Using
chemical similarity, he selected from a set of virtual, robot-capable reac-
tions a set of 8 compounds. These were robotically synthesized [8] and
tested for activity [9]. Three showed activity improvement ranging
from 2 to 10-fold from the initial hit.

Eric Martin described a collection of empirical protein-family virtual
screening (PFVS) models (Fig. 6) which combine extensive IC50 and
structural data from all historical kinase projects to produce predictive
activity and selectivity models for both biochemical and cellular assays
of new kinases, with accuracy comparable to experimental high-
throughput screens [10]. He described numerous case studies where
accurate prediction of biochemical and cellular selectivity identified
starting points for medicinal chemistry and tool compounds that
s an essential gene, this could explain the similar activity of these compounds on the cancer

l and structural aspects of kinase discovery from IPK2014, Biochim.
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validated, or in several instances invalidated, newly proposed drug tar-
gets. Hit rates were consistently 25% to 80%, even for novel scaffolds
completely unrelated to the known inhibitors.
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2.3. Biochemical and cellular assay panels and computational target
identification

Panels of biochemical and cellular assays [11] have been used in
multiple ways to understand potential uses of kinase inhibitors to
treat various cancers. The signatures together with Genetic back-
grounds, mRNA expression levels and shRNA data have in turn been
used to understand compound signatures, with the goal of creating pa-
tient tailoring hypotheses.

Thibault Varin showed how one could utilize kinase inhibitor profiles
to elucidate reasons for cell panel signature similarity. In several cases, a
target hypothesis could be derived, indicating and confirming the role of
PLK1 [12] in cell proliferation. He presented comparisons of compounds
based on the activity on large cancer cell sensitivity and kinase affinity
panels. By integrating these two compound profiles, he showed that the
target towardwhich a compound has been historically optimized doesn't
necessarily drive the cellular activity of a given cell line or even of
the overall cancer cell line panel. A RSK (BI-D1870) and a FAK
(PBCHM10389596) inhibitor were reported to have a similar cancer cell
sensitivity panel as a PLK1 (BI-2536) inhibitor. These compounds both
U
N
C
O

Fig. 10. The BioMAP system showing Human Primary cells Diseasemodels on the left, biomarke
informatics tools with ability to predict clinical outcomes from data.
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showed affinity for PLK1 in the kinase panels (Figs. 7 & 8) (Kinomescan,
DiscoverX).

Eric Martin applied Protein Family Virtual Screening (PFVS) (see
above) to predict the IC50s for 3 million compounds against 2000 bio-
chemical and cellular assays (Fig. 9) [7,13]. These were applied to
predicting polypharmacology, modes-of-action for phenotypic screens,
toxicity profiling, and selecting commercial compounds with diverse
selectivity profiles for chemical archive enhancement.

Alexander Baumann described the extension of thewell-established
kinomescanmethodology to the bromodomain (BRD) family. Screening
kinase inhibitor libraries against a bromodomain panel identified sever-
al established kinase inhibitors that were cross-reactive and might be
repurposed as kinase-BRD dual inhibitors. He also introduced the
“BioMAP” technology platform that provides a measure of overall phe-
notypic response of compounds under disease-like conditions, and
identifies clinically relevant activities across a broad protein biomarker
panel. The BioMAP systems are stimulated primary human cell types
and co-cultures designed to recapitulate the complex signaling net-
works and microenvironment in diseased human tissue (Fig. 10) [14].
The resulting biomarker fingerprints are useful for identifying modes
of action and toxicity profiling. The biomarker fingerprints from the
kinase/BRD dual inhibitors showed a hybrid of both mechanisms [15].

Richard Engh examined methods to evaluate protein kinase target
similarities with the aim to compare information types hierarchically.
At the simplest level, “pseudosequence” similarities were calculated
r responses to N3000 drugs stored in the database in themiddle and a variety of specialized

l and structural aspects of kinase discovery from IPK2014, Biochim.
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based on sequences chosen to represent binding site residues (Fig. 11).
Statistically, these corresponded quite well with experimental inhibi-
tion profiles from Ambit 2011 data [16], especially for tyrosine kinase
targets (Fig. 12). Such analyses support the use of surrogate kinases in
Please cite this article as: E. Martin, et al., Perspective on computationa
Biophys. Acta (2015), http://dx.doi.org/10.1016/j.bbapap.2015.03.014
structure-based drug discovery [17], and may aid in choosing focused
screening libraries for repurposing or retargeting known compounds.

At a higher level of information content, similarity analyses of target
proteins would involve comparisons of X-ray structures. Currently,
l and structural aspects of kinase discovery from IPK2014, Biochim.
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comprehensive integration of structural information is not practically
possible: there is too much unpredictable structural variability, the dis-
tributions of structural states are strongly influenced by crystallization
conditions [18], and experimental binding data are highly dependent
Please cite this article as: E. Martin, et al., Perspective on computationa
Biophys. Acta (2015), http://dx.doi.org/10.1016/j.bbapap.2015.03.014
on assay conditions, which in turn are often not accessible to data min-
ing tools. On the other hand, some specific areas are well supported, in-
cluding reliable clustering of key structural states (notably DFG and C-
helix states, see many other talks from IPK2014 and other references,
l and structural aspects of kinase discovery from IPK2014, Biochim.
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including [19]). For well characterized diseases, the data increasingly
enable targeted pharmacology by identifying key determinants of target
similarities, possibly combined with “orthogonal” dissimilarities.

2.4. Future directions—introducing crowd sourcing into drug design

Jens Meiler showed principles and application examples of the
RosettaLigand [20] and BCL::Cheminformatics [21] computational soft-
ware packages, developed across academic institutions, highlighting
both structure-based and ligand-based drug design (Fig. 13). A fascinat-
ing application of Rosetta is the computer game Foldit [22], with over
200,000 users. The goal of the game is to predict the structure of a pro-
tein. In addition to educational value, it is an example of crowd sourcing
to solve challenging scientific problems. The crowd sourcing approach is
similarly being translated into drug discovery with a drug design
component of Foldit. One application of the game was to one of
malaria's essential kinases PKG [23], the X-ray structure of which was
revealed at themeeting. For ligand-based drug design theQSARapplica-
tion BCL::Cheminformatics [21] was introduced which converted a
ligand structure into a property vector of charge, shape, or H-bonds
donors and acceptors. Chirality was included by a signed volume using
a right-hand rule [24]. A QSARmodelwas trained using an artificial neu-
ral network. In several example applications the hit-rate in virtual
screening increased by factors of 15–50 over conventional diversity
approaches.

3. Conclusions and summary

These computational presentations illustrated many recent ad-
vances in understanding the activity and selectivity of kinase inhibitors
and their relationships to protein structure. The approaches ranged
from highly empirical to purely physics-based. They ranged from
mining large activity and structure databases, to simulating the physics
of ligand binding into active and inactive conformations, to probing
Please cite this article as: E. Martin, et al., Perspective on computationa
Biophys. Acta (2015), http://dx.doi.org/10.1016/j.bbapap.2015.03.014
Econformational energetics by synthesizing related ligands designed to
bind alternate conformations. The presentations helped to move our
understanding of the chemistry, physics, biochemistry and biology of
kinase structure and activity, and illustrated how that understanding
impacts drug discovery programs. It is also our view that computational
methods will facilitate drug discovery/development against kinases of
eukaryotic pathogens for which there is limited experimental informa-
tion available, an additional theme of the conference. Hopefully these
highlights have whetted your appetite to dig further into some of
these topics in the accompanying articles in this issue.
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