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Abstract
Computational protein design has found great success in engineering proteins for thermo-

dynamic stability, binding specificity, or enzymatic activity in a ‘single state’ design (SSD)

paradigm. Multi-specificity design (MSD), on the other hand, involves considering the stabil-

ity of multiple protein states simultaneously. We have developed a novel MSD algorithm,

which we refer to as REstrained CONvergence in multi-specificity design (RECON). The

algorithm allows each state to adopt its own sequence throughout the design process rather

than enforcing a single sequence on all states. Convergence to a single sequence is

encouraged through an incrementally increasing convergence restraint for corresponding

positions. Compared to MSD algorithms that enforce (constrain) an identical sequence on

all states the energy landscape is simplified, which accelerates the search drastically. As a

result, RECON can readily be used in simulations with a flexible protein backbone. We have

benchmarked RECON on two design tasks. First, we designed antibodies derived from a

common germline gene against their diverse targets to assess recovery of the germline,

polyspecific sequence. Second, we design “promiscuous”, polyspecific proteins against all

binding partners and measure recovery of the native sequence. We show that RECON is

able to efficiently recover native-like, biologically relevant sequences in this diverse set of

protein complexes.

Author Summary

The ability to design a new protein with a desired activity has been a longstanding goal of
computational biologists, to create proteins with new binding activity or increased stabil-
ity. An even more ambitious goal is multi-specificity design, which extends general protein
design by creating a sequence that has low energy with multiple binding partners. We
have developed a new algorithm for multi-specificity design that more efficiently finds a
low energy sequence for all complexes. This increased efficiency enables simulation of
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biologically relevant motion between binding partners, such as backbone movement and
shifts in orientation. We show that our algorithm outperforms existing approaches, and
compare the predicted low energy sequences to the sequences naturally seen through evo-
lution of each protein. We find that this algorithm is able to more accurately represent the
scope of sequences that are found in biological contexts. This method can be applied to
design new proteins with the ability to bind multiple distinct partners.

Introduction
Computational protein design is an invaluable tool for protein engineers seeking to create a
protein with novel properties. Protein design, also known as the inverse folding problem,
involves searching for a sequence that stabilizes a given conformation. Besides the obvious
goal–to give the protein increased thermodynamic stability [1–3]–protein design often pursues
the goal of creating new function. This can include for example redesigning an antibody to rec-
ognize a new variant of a target protein [4], designing an enzyme to bind the transition state
for a new chemical reaction [5], or redesigning a DNA-binding protein to recognize a different
DNA sequence [6]. Most success in protein design has been achieved through a single state
design (SSD) task, i.e. the free energy minimization of a single protein conformation to increase
its stability [1,7,8].

Multistate design approaches
In contrast to SSD, multistate design (MSD) minimizes the free energy of multiple protein con-
formations (“states”) simultaneously. This enables negative design, which involves destabiliz-
ing a certain conformation to shift relative occupancy to alternate conformations, which is
useful in designing proteins with binding selectivity. MSD has been applied successfully in a
number of cases, including the design of a protein conformational switch [9], design of selec-
tive b-ZIP binding peptides [10], and design of an enzyme with DNA cleavage specificity [11],
among others [12,13].

Algorithmic requirements for multistate design
All MSD algorithms have at their core a fitness function that defines the favorability of a given
sequence based on its corresponding energy in each state. The major challenge in fixed back-
bone MSD is efficient optimization of side chain rotational isomer (“rotamer”) placement,
using the fitness function as the objective function. As more states are considered it becomes
increasingly difficult to find the minimum energy sequence on a fixed backbone. As the same
sequence on all states is constrained, extensive sampling in sequence and rotamer space is
required. This is often accomplished via thorough but slow genetic algorithms [12,14,15].

Challenges in expanding the scope of multistate design
This difficulty in reaching the global minimum in a basic fixed backbone design problem pre-
cludes the possibility of using alternate sampling strategies, such as iterating between backbone
minimization and rotamer optimization. However, these techniques have been used in SSD to
great effect and are often critical to find the lowest energy conformation and sequence [1,8]. In
result, MSD algorithms can arrive at an incorrect solution even after successful sequence opti-
mization just because the fixed backbone precludes the lowest energy sequence and conforma-
tion from being sampled. This issue can be partially resolved by the inclusion of multiple
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backbone conformations as separate states [16]. However, there is a need for a method that can
more efficiently reach the optimal MSD solution for an arbitrary number of input states with-
out relying on the commonly held “fixed backbone assumption”.

Multi-specificity design as single state design with restraints
To this end, we have developed a novel MSD algorithm, referred to as REstrained CONver-
gence in multi-specificity design (RECON). The algorithm is based on a different conception
of MSD, wherein each state independently explores sequence space to reach its energetic mini-
mum. A step-wise increasing convergence restraint is applied such that corresponding posi-
tions in different states converge on the same amino acid. By encouraging sequence
convergence between different states rather than enforcing a single sequence, we hypothesize
that energetic barriers to the fittest solution collapse, reducing the ruggedness of the energetic
landscape in a MSD problem to SSD-like complexity. In result the search efficiency and speed
are substantially increased allowing for the sampling of additional degrees of freedom. Further,
we hypothesize that including backbone conformational sampling reduces the chance that the
low energy and possibly correct solutions are excluded from the search space.

Results

The restrained convergence algorithm
The RECON algorithm allows separate states to explore their own local sequence and confor-
mational space to optimize free energy, while restraining corresponding residues in different
states with a convergence restraint to encourage sequence convergence. Convergence restraints
are kept small in early rounds, to allow each state to explore its own lowest energy sequence,
and ramped up in later rounds to encourage sequence convergence between different states.
This is followed by a greedy selection step, which evaluates all candidate amino acids at posi-
tions that fail to converge, and selects the one that results in the lowest fitness when applied
over all states. This greedy selection is included in order to ensure that one multi-specific
sequence is generated from each design trajectory. Backbone minimization steps can be
included between design rounds to relieve slight clashes between side chains. Pseudocode
describing the implementation of the algorithm is shown in Fig 1. Individual states optimize
rotamer placement using a simulated annealing Monte Carlo search, sampling from a prede-
fined rotamer library [17,18]. However, we emphasize that this method can be applied to any
multi-specificity problem using an arbitrary optimization method and scoring function.

Reduction of energy barriers in restrained multi-specificity design
By allowing each state to determine its optimal sequence independently, we can collapse the
energy barrier to reaching a “compromised” sequence that results in low energy in all states.
We propose a scenario in which encouraging sequencing convergence in this way can reduce
the energetic barrier and enable convergence on a low energy solution (Fig 2). In this scenario,
two separate mutations from residue identity A to B are needed for the lowest fitness over both
states. Each single mutation will encounter a high energy penalty and rarely selected by a
genetic algorithm–only when both mutations are stochastically placed together will the solu-
tion emerge, which may take a large number of evaluations. However, when sequence conver-
gence is encouraged rather than enforced, each state will identify an intermediate solution in
early rounds, and in later rounds the most favorable solution will be selected from the differing
states. This collapses the barrier on the pathway to a favorable solution and reduces the steps
necessary to find that solution.
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Fig 1. Pseudocode describing the implementation of the RECON algorithm.

doi:10.1371/journal.pcbi.1004300.g001
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Common germline gene reversion benchmark
To benchmark RECON, we considered two types of design problems. In the first, mature anti-
bodies derived from a common germline gene were entered into MSD in complex with their
target antigens. It has been shown that MSD of mature antibodies results in a higher rate of
germline sequence reversion than SSD, implying that the germline sequence is near-optimal
for polyspecificity [19,20]. Therefore, we designed each antibody against its respective targets
and used germline sequence recovery as an indirect measure of the rate of recovery of an opti-
mal solution. We used antibodies derived from three different germline genes—VH1-69, VH3-
23, and VH5-51. The number of antibody-antigen complexes per germline gene ranged from 3
to 6 (Table 1).

Promiscuous protein design benchmark
The second task was to design a set of “promiscuous” proteins, proteins that have been crystal-
lized in complex with multiple binding partners, against each of these partners. Similar to poly-
specific germline antibodies, promiscuous proteins have been shown to have a native sequence
that is near-optimal for binding to all of the partners [14,22]. Therefore an effective MSD pro-
tocol would result in a high rate of native sequence recovery. A set of five promiscuous proteins
derived from a study done by Humphris et al. was used [14], in addition to two broadly neu-
tralizing anti-influenza hemagglutinin antibodies (Table 2) [23,24].

Design algorithms included in benchmark
Benchmark cases were designed using three separate design methods. First, design was per-
formed using RECON with a fixed backbone. Fixed backbone design has to this point been the
standard in MSD due to the complexity involved in recalculating rotamer interactions for each
backbone movement. However, using fixed backbone design alone is prone to false negatives,
as sequences that may be highly favorable with a small shift in backbone conformation are

Fig 2. Schematic showing proposed energy landscape of forced vs. encouraged sequence
convergence in MSD. By allowing each state to maintain its own sequence and explore sequence space
independently, RECON is able to provide an intermediate solution in a MSD problem, enabling more rapid
determination of a low energy solution. Dashed lines represent forced convergence, where both states must
adopt the same sequence (either AB or BA), whereas the solid line represents encouraged convergence,
where state 1 can adopt sequence AB while state 2 adopts BA. This creates a lower energy intermediate
state leading to more rapid adoption of the optimal solution, sequence BB.

doi:10.1371/journal.pcbi.1004300.g002
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discarded. One of the unique advantages of RECON is its ability to incorporate iterative rounds
of rotamer packing and backbone minimization. Therefore, we included such an iterative pro-
tocol as the second approach in our benchmark. For comparison purposes, all complexes were
also designed using the existing MSD application in ROSETTA (MPI_MSD), which operates on a

Table 1. Complexes used in common germline antibody benchmark.

VH germline gene Variable positionsa Antibody Ligand PDB ID

VH1-69 40 D5 gp41 2CMR

F10 H5/Vietnam/1203/2004 3FKU

CR6261 H5/Vietnam/1203/2004 3GBM

8066 gp41 3MA9

8062 gp120 3MAC

1281 gp41 3P30

VH3-23 31 Pertuzumab ErbB2 1S78

G6 VEGF 2FJG

Apu2.16 Ubiquitin 3DVN

E2 MT-SP1 3BN9

VH5-51 30 2219 UG1033 2B1A

K1-70 TSHR 2XWT

Ustekinumab IL-12 3HMX

RECON was benchmarked on three sets of mature antibodies derived from the same VH gene. Effective MSD should result in reversion of mature

antibodies to the polyspecific germline sequence.
aGermline sequence and positions varying from germline are inferred from IMGT/3D Structure-DB [21].

doi:10.1371/journal.pcbi.1004300.t001

Table 2. Complexes used in promiscuous protein benchmark.

Promiscuous protein Binding partner PDB ID Designable positionsa

CR6261 H5/Vietnam/1203/2004 3GBM 19

H1/BrevigMission/1/1918 3GBN

FI6v3 H1/California/04/2009 3ZTN 21

H3/Aichi/2/1968 3ZTJ

CheY FLiM 1F4V 15

CheA 1FFG

CheZ 1KMI

Elastase Elastase Inhibitor 1EAI 25

Elafin 1FLE

Hybrid Squash Inhibitor 1MCV

FYN SH3 Domain HIV-1 NEF Protein 1AVZ 7

SAP 1M27

PapD Chaperone PapE 1N0L 28

PapK 1PDK

PapD Homodimer 1QPP

Ran Importin beta 1IBR 24

Exportin CSE1P/KAP60P 1WA5

RECON was benchmarked on a set of promiscuous proteins that have been crystallized in complex with multiple partners. As the native sequence is near

optimal for binding of all partners, MSD should recover the native sequence at a high rate.
aResidues determined to be at the interface with all binding partners. See methods for details on interface residue calculations.

doi:10.1371/journal.pcbi.1004300.t002
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fixed backbone [15]. MPI_MSD differs from RECON in that it uses a genetic algorithm to cre-
ate and advance mutations and a user-defined fitness function to assess fitness of each
sequence. However, as both methods are built into the ROSETTA framework, they sample from
the same rotamer library and use the same scoring function and are therefore suitable for com-
parison. In addition to native sequence recovery, we used the fitness of the top ten designs,
defined as the sum of ROSETTA energies of all complexes, to analyze how effectively each proto-
col reached an energetic minimum. This fitness function has been previously used in studies of
design of protein multi-specificity [14]. We use the term “design” to refer to sequence optimi-
zation of existing protein-protein complexes—however, it is important to note that these
sequences were not experimentally characterized, and results reported are purely in silico.

Common germline derived antibodies
For common germline gene-derived antibodies, RECON was consistently able to recover the
germline sequence at a higher rate than MPI_MSD (Table 3 and Fig 3). Germline sequence
recovery for RECON ranged from 55–94% using fixed backbone and 51–95% using backbone
minimization, while recovery for designs using MPI_MSD ranged from 32–64%. When com-
paring RECON fixed backbone to MPI_MSD, it appeared that designs created by RECON,
although higher in native sequence content, were also energetically less favorable. We therefore
subjected all fixed backbone designs to a single round of ROSETTA relax energy minimization to
relieve frustrations and allow for direct comparison of fitness of RECON incorporating back-
bone minimization to fixed backbone designs (S1 Table). These post-minimization fitness val-
ues show that the energetic gap between RECON- and MPI_MSD-generated designs was
substantially closed, and that designs generated by any method occupied similar ranges of fit-
ness. We observed that MPI_MSD tended to produce designs with the lowest fitness—how-
ever, it is important to note that rotamer optimization within ROSETTA is a stochastic process,
with no guarantee of reaching the global minimum. Therefore a protocol that performs hun-
dreds of rounds of rotamer optimization, such as MPI_MSD, would be expected to produce
better energies than one performing four rounds of optimization, such as RECON, indepen-
dent of the sequence identity of structures being optimized.

Promiscuous protein complexes
RECON was able to recover the native sequence at a very high level for all promiscuous
protein complexes–native sequence recovery ranged from 72–100% and 73–100%, using fixed

Table 3. Results of common germline gene multi-specificity design benchmark.

Native Sequence Recovery (%) Fitnessa (REU)

Germline gene RECON FBB RECON BBM MPI_MSD RECON FBB RECON BBM MPI_MSD

VH1-69 94.2 95.1 64.0 -3015.9 -5306.7 -5131.9

VH3-23 55.3 51.7 39.5 -911.7 -3427.1 -3320.9

VH5-51 65.9 65.2 32.0 -840.5 -2348.3 -2260.8

Average 71.8 70.7 45.2 -1589.4 -3694.0 -3571.2

Three sets of antibodies encoded by a common germline gene were designed against their targets using RECON, both by fixed backbone (FBB) and

backbone minimized (BBM) designs, and MPI_MSD algorithms. Designs were evaluated by recovery of the germline sequence and the fitness of

designed models.
aFitness is defined as the sum of the ROSETTA score of all input complexes, in ROSETTA Energy Units (REU). Fitness was reported for the top ten complexes

generated by each design method.

doi:10.1371/journal.pcbi.1004300.t003
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backbone and backbone minimization, respectively. MPI_MSD generated designs with native
sequence recovery ranging from 70–94% (Table 4 and Fig 3). In most cases fitness of designs
generated by RECON fixed backbone and MPI_MSD were very similar, suggesting that both
methods have reached the energetic minimum (S1 Table). Even though all methods reached a
similar level of native sequence recovery and energetic fitness in a majority of these benchmark
cases, RECON was able to reach these minima by searching a compressed sequence space,
allowing for increased computational efficiency.

Fig 3. Native/germline sequence recovery of designed complexes. 100 designs were generated using
RECON, with both fixed backbone (FBB) and backbone minimized (BBM) protocols, and MPI_MSD.
Sequences of the top 10% of models were compared to either the native sequence or, in the case of common
germline-derived antibodies, to the germline sequence. See methods for details of native sequence recovery
calculations.

doi:10.1371/journal.pcbi.1004300.g003

Table 4. Results of promiscuous protein multi-specificity design benchmark.

Native Sequence Recovery (%) Fitnessa (REU)

Promiscuous protein RECON FBB RECON BBM MPI_MSD RECON FBB RECON BBM MPI_MSD

CheY 80.6 84.9 75.6 -1093.1 -1119.7 -1090.8

CR6261 79.0 79.0 79.1 -2499.5 -2537.7 -2499.9

Elastase 84.8 87.3 84.9 -1383.8 -1445.1 -1394.7

FI6v3 72.2 72.7 70.2 -2459.1 -2515.2 -2464.3

FYN 100.0 100.0 94.7 -758.3 -780.3 -760.8

PapD 92.5 87.3 78.4 -1685.5 -1789.2 -1758.6

Ran 87.1 86.2 84.8 -2682.3 -3716.4 -3696.5

Average 85.2 85.3 81.1 -1794.5 -1986.2 -1952.2

Designs were generated using RECON, both by fixed backbone (FBB) and backbone minimized (BBM) designs, and MPI_MSD algorithms. Models were

evaluated by recovery of the native starting sequence, and the energetic fitness of design models.
aFitness is defined as the sum of the ROSETTA score of all input complexes, in ROSETTA Energy Units (REU). Fitness was reported for the top ten complexes

generated by each design method.

doi:10.1371/journal.pcbi.1004300.t004
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Importance of ramping convergence restraints on algorithm performance
We hypothesized that gradually ramping the convergence restraints will allow for sequence
divergence in early rounds of design and enforce convergence in later rounds, leading to an
improved result as it smoothens the energy landscape. To confirm the effects of gradually
increasing the weight of the convergence restraint, we performed a control in which sequences
were designed independently for each state with no convergence restraint, followed by
sequence selection by the greedy selection used at the end of RECON (S2 Table). This greedy
selection algorithm performed significantly worse than RECON with gradual ramping conver-
gence restraints, with worse native sequence recovery in all benchmark cases but one. In addi-
tion, in many benchmark cases fitness was significantly worsened for designs generated by this
greedy selection protocol. These results indicate that ramping convergence restraints through-
out the design protocol is critical for the increased performance of RECON.

Sequence recovery at positions that fail to converge
Based on the decreased performance of this greedy selection algorithm, it would be expected
that RECON works best at positions where amino acids converge between different states by
the end of the protocol and are not greedily selected. We therefore evaluated the convergence
of amino acids at each position for the VH5-51 benchmark set. We report the number of times
a position failed to converge in 100 design trajectories for the 30 designed positions in this
benchmark set (S3 Table). The results suggest that most positions tend to be consistent in their
patterns of convergence, and that the majority (21 out of 30) reach a common amino acid solu-
tion by the end of the protocol. The results of the greedy selection protocol suggest that failure
to converge leads to a decrease in performance of the algorithm and selection of non-native
amino acids. We therefore compared germline sequence recovery for positions that failed to
converge in at least half of the design trajectories, as compared to those that converged in more
than half of the trajectories, to determine whether these positions are substantially decreasing
overall germline sequence recovery (S3 Table). Surprisingly, positions that failed to converge
actually showed a higher rate of germline sequence recovery than those that were able to con-
verge through the application of convergence restraints (S3 Table). These results indicate that,
although the greedy selection algorithm should not be applied without first ramping conver-
gence restraints to encourage convergence, the use of greedy selection for positions that fail to
converge is not a limiting factor for obtaining high native sequence recovery.

RECON is able to circumvent high-energy intermediates
In the scenario proposed in Fig 2, we hypothesize that RECON is able to circumvent high-
energy intermediate sequences by encouraging rather than enforcing sequence convergence.
We therefore analyzed the sequence trajectory of an example from the FI6v3 benchmark to
support this scenario (Fig 4A). In early rounds, the two states diverge in sequence to explore
their own energy landscapes. As restraints are increased in later rounds the two states converge
on a compromised sequence that is the multi-specific solution for both, only adopting muta-
tions when they are beneficial to both states. Although fitness values continue to decrease after
encountering the compromised sequence, this is primarily due to the stochastic nature of rota-
mer optimization, such that increased optimization will result in a lower score. We focused on
a set of complementary mutations that diverged in early rounds with a low convergence
restraint, to test the hypothesis that the sequence preference of one state results in a high energy
on the other state, and vice versa (Fig 4A, highlighted in red). We found that the sequences
preferred by state 1 (TSY) and state 2 (QQW) indeed resulted in higher energy when forcing
one state to adopt both sequences than when each state was allowed to adopt its own sequence
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(Fig 4B). This lowers the barrier to reaching the “compromised” sequence, adopting residues
favorable to both state 1 and state 2, which in this case is the sequence QQY. Although this bar-
rier is not as large as proposed in Fig 2, we expect that this barrier will be lower in cases where
two binding partners have highly similar binding surfaces, as is the case in our benchmark sets.
However, when binding surfaces are more dissimilar, and therefore finding compromise resi-
dues is more critical to a favorable binding energy, we expect this barrier to be larger, and the
benefit of an independent sequence search to be even greater.

Computational efficiency of design methods
In addition to measuring the sequence recovery and energetic fitness, we compared the computa-
tional efficiency of these three design protocols. We argue that, although in certain cases all meth-
ods were able to reach the same energetic minimum, RECON provides an added benefit in that
it reached this minimum in a fraction of the time required to run MPI_MSD. To this end we
compared CPU hours of runtime for generating the previously discussed designs (Table 5). As
expected, RECON using a fixed backbone was the most efficient of the three protocols, followed
by RECON incorporating backbone minimization, andMPI_MSD. This increase in efficiency is
due to the reduction in search space by allowing each state to adopt its own sequence.

Generation of evolutionary sequence profiles
We hypothesize that RECON is able to operate at higher efficiency by restricting sampled
sequences to more relevant sequence space. We further believe that our conception of “rele-
vant” sequence space is reflected in an ensemble of biologically observed sequences, and that
RECON should recover not only a native protein sequence, but also biologically tolerated
mutations. To address this question we generated a position-specific scoring matrix (PSSM) of
amino acid frequencies in evolutionarily related proteins to each benchmark protein using a
PSI-Blast query [25]. Among the promiscuous proteins we restricted this analysis to non-

Fig 4. Encouraging sequence convergence in RECON can avoid high-energy sequence intermediates. A. An example design trajectory of RECON in
the FI6v3 benchmark through four design rounds is shown. Sequences tend to diverge in early rounds when convergence restraints are kept low, whereas in
later rounds when restraints are increased states are encouraged to adopt a single solution. The figure displays one example from the fixed backbone design
protocol, with convergence restraints removed before reporting fitness. The two states showed different preferences for residues highlighted in red. B.
Residues highlighted in panel A were applied to the opposing state to analyze the energetic barrier of forced sequence convergence. The energy of these
three residues was analyzed when the sequence favored by state 1 (TSY) was applied to state 2, and vice versa with the sequence QQW (intermediate
sequence, black/red lines). This was compared to the three-residue fitness when each state was allowed to adopt its own preferred sequence (intermediate
sequence, blue line). Energies were compared to the final, “compromised” sequence (QQY). These three amino acids occurred at positions 28, 30, and 53,
respectively.

doi:10.1371/journal.pcbi.1004300.g004
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antibodies, since the full-length sequence of a mature antibody is unlikely to have a large num-
ber of meaningful evolutionary counterparts. However, since antibodies in the common germ-
line-encoded benchmark set were only designed in positions deriving from the VH gene, we
were able to derive a PSSM from other common VH-encoded antibodies in the database. We
then compared the PSSM to the amino acid frequency in corresponding positions in designed
sequences to estimate how well the design protocol mimicked evolution. We measured agree-
ment of sequence profiles using a modified Sandelin-Wasserman similarity to yield a percent
similarity for each designed position that could then be averaged over the protein [26]. Fig 5A
shows a comparison of positions in the VH5-51 benchmark where designs either agreed or dis-
agreed with evolutionary sequence profiles—the degree of agreement could then be quantitated
by the percent similarity calculated over each position.

Comparison of designs to observed sequence profiles
We found that RECON was able to create sequences that more closely mirrored natural
sequence variation than MPI_MSD (Table 6 and Fig 5B). Averaging over the benchmark cases,
we observed 69, 73, and 57% similarity to evolutionary sequence profiles using RECON fixed
backbone, backbone minimized, and MPI_MSD, respectively. This pattern was especially
strong in benchmark cases with large numbers of designable residues, as the number of
designed residues correlated positively with the improvement of RECON over MPI_MSD in
recapitulating evolutionary sequence profiles (Fig 5C). When comparing the four largest
benchmark cases by number of designable residues (three common germline-derived antibod-
ies and the PAPD complex), RECON shows a marked improvement over MPI_MSD in recov-
ery of evolutionary sequence profile (Fig 5D). Although this result is not significant due to a
small sample size, it is suggestive of the additional benefit provided by RECON when applied
to large, computationally intensive design problems. We hypothesize that this is due to com-
pressed sequence space explored by RECON. When design problems are relatively small, the
genetic algorithm employed by MPI_MSD is able to efficiently search through sequence space
for a low-energy solution. However, when the sequence space increases in a large design prob-
lem the compressed sequence search is more advantageous.

Table 5. Comparison of CPU runtimes for multi-specificity design using different algorithms.

CPU Hours

Benchmarkcase RECON FBB RECON BBM MPI_MSD

CheY 12.0 24.0 61.1

CR6261 20.8 66.0 137.5

Elastase 24.2 47.7 198.9

FI6v3 21.2 80.2 46.1

FYN 0.8 12.8 21.2

PAPD 37.9 99.5 129.1

Ran 23.1 153.3 276.9

VH1-69 48.7 171.1 487.1

VH3-23 43.7 98.1 167.5

VH5-51 19.5 71.7 95.7

Average 25.2 82.4 162.1

Runtimes in CPU hours for generation of 100 designs using RECON, both by fixed backbone (FBB) and backbone minimized (BBM) methods, and

MPI_MSD algorithms.

doi:10.1371/journal.pcbi.1004300.t005
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RECON searches a compressed, more relevant sequence space
We have shown that designs generated by RECON tend to more closely represent the evolu-
tionary sequence profiles of our benchmark proteins when compared with MPI_MSD. We pro-
pose that this is accomplished via a more focused sequence search within the biologically
relevant space. To further support this claim, we have analyzed the sequence space searched by
RECON and MPI_MSD and compared it to the final output sequences of the top ten designs

Fig 5. Recapitulation of evolutionary sequence profiles by multi-specificity design. A. For each protein in the benchmark set, an evolutionary sequence
profile (top) was calculated and compared to the sequences generated by MSD (bottom). A similarity score was calculated for each position and averaged
over designed positions to measure how well design searches biologically relevant sequence space. Highlighted are example positions where designed
sequences either agreed (blue) or disagreed (red) with naturally occurring sequences. The figure displays the designed amino acid profile for a subset of
positions in the VH5-51 benchmark set. See methods for details on percent similarity calculation. Amino acids are colored according to chemical properties.
B. RECON-generated designs were more similar to observed evolutionary sequence profiles than those produced by MPI_MSD. Percent similarity was
averaged over designed positions that had been mutated by any design method. Plotted are mean and SEM values. Design protocols are colored as in panel
D. C. Improvement in recapitulating evolutionary sequence profiles of RECON increases with the number of designed positions. For each benchmark set, the
number of designed positions is plotted against the difference in evolutionary sequence similarity between RECON backboneminimized and MPI_MSD.
Least-squares linear fit is shown, with an R-value of 0.61 and p value of 0.02. D. Difference in recapitulation of evolutionary sequence profile for the four
largest benchmark sets by designs generated by RECON using fixed backbone (FBB) or backbone minimization (BBM) protocols, or MPI_MSD. P values
were calculated using a paired two-tailed t test.

doi:10.1371/journal.pcbi.1004300.g005

Multi-specificity Design with Independent Sequence Searching

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004300 July 6, 2015 12 / 23



for the VH5-51 benchmark set (S1 Fig). We generated the sequence space profile by including
any residue that was sampled at any step of the design protocol at each position, and then com-
pared this profile to the final sequences among the top ten designs. Presumably the most effi-
cient algorithm would only sample the sequences that are eventually selected as low energy
solutions, resulting in a similarity of 100% between sequence space explored and output
designed sequences. Therefore we used this similarity as an indicator of the degree of “wasted”
sequence space, which is explored but never part of a low energy solution. Comparison of the
profiles generated by RECON on a fixed backbone and MPI_MSD show that RECON explores
space much more closely constrained to the final low energy sequences, with a similarity score
of 92%, as compared to 80% for MPI_MSD. This further supports the claim that RECON
searches a compressed search space to encounter a low energy multi-specific solution.

Structural differences in residues preferred by different algorithms
The algorithms RECON and MPI_MSD feature substantial differences in sequence and struc-
ture at many positions of the output design models, particularly in the common germline anti-
body benchmark sets. We hypothesized that this difference in preference may be due to a
failure by MPI_MSD to exhaustively search through sequence space in a large design problem.
Concurrently we expect that the sequences selected for by RECON are actually lower in overall
fitness. We present structural analysis of three positions, residues 32, 33, and 74 in the VH3-23
benchmark, to support this claim. Position 32 showed a preference for tyrosine in RECON-
generated designs, whereas MPI_MSD prefers glycine. Tyrosine is able to fill a cross-interface
gap in the 1S78 complex, and can establish hydrogen bonding to an amide nitrogen across the
interface (Fig 6A). This additional hydrogen bonding produces a large drop in fitness for this
residue across all states (-1.85 versus -5.97 REU). Interestingly, tyrosine is the germline residue
at this position, and was only recovered using RECON with backbone minimization—both
RECON fixed backbone and MPI_MSD favor glycine at this position. Position 33 also showed
difference preferences between design methods—alanine was favored by MPI_MSD, whereas
RECON favored serine. Serine results in a lower overall fitness due to additional hydrogen
bonding with a glutamine residue on the heavy chain CDR3 loop of the antibody (Fig 6B). At
this position, alanine is the germline residue—however the per-residue fitness values indicate

Table 6. Comparison of design-generated sequences to evolutionary sequence profiles of input proteins.

Evolutionary sequence similarity (%)a

Benchmarkcase RECON FBB RECON BBM MPI_MSD

CheY 56.3 70.5 57.5

Elastase 60.3 70.7 65.9

FYN 87.0 87.0 96.0

PAPD 61.7 65.3 52.4

Ran 76.6 79.3 82.5

VH1-69 90.6 91.7 32.0

VH3-23 50.7 50.7 36.4

VH5-51 69.0 67.0 30.4

Average 69.0 72.8 56.6

Designs produced by MPI_MSD or fixed backbone (FBB) or backbone minimized (BBM) RECON algorithms were compared to sequence profiles of

evolutionarily related proteins at designed positions.
aSequence similarity is computed as the Sandelin-Wasserman similarity, normalized as a percentage. See methods for details.

doi:10.1371/journal.pcbi.1004300.t006
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Fig 6. Structural analysis of sequence preferences of RECON and MPI_MSD. At positions 32 (A), 33 (B),
and 74 (C), RECON and MPI_MSD showed consistent difference in sequence preference in the VH3-23
benchmark. Circled in red are positions that differ between the two structures. Shown in parenthesis are per-
residue energy scores in REU summed across all post-minimization states. Shown above are post-
minimization structures from designs generated by RECON and MPI_MSD. Structures shown in panels A
and C are from the 1S78 complex, and those in panel B are from the 3BN9 complex.

doi:10.1371/journal.pcbi.1004300.g006
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that serine is able to stabilize this loop in the 3BN9 complex without compromising stability of
the other states (Fig 6B, fitness shown in parenthesis). Lastly, position 74 showed a preference
for threonine in RECON-generated designs, as opposed to serine in MPI_MSD-generated
designs. Threonine is able to establish cross-interface hydrogen bonding in the 1S78 complex
without causing clashes in other states, whereas serine is somewhat surprisingly not positioned
to create this interaction (Fig 6C). This is partially due to backbone movements in the
RECON-generated structure that position the hydroxyl group for optimal hydrogen bond
geometry. In addition to hydrogen bonding, threonine scores more favorably on the basis of
increased van der Waals attractive forces of the additional methyl group with surrounding
atoms. At this position, asparagine is the germline amino acid, which was recovered by neither
RECON nor MPI_MSD.

Incorporating backbone motion results in increased recapitulation of
evolutionary sequence profile
From our initial benchmark results, we did not observe a difference in evolutionary sequence
similarity for designs created with fixed backbone versus backbone minimization protocols
(Fig 5D). However, as previous reports have shown the utility of incorporating backbone
motion into a design protocol [8,27–29], we hypothesized that the initial minimization of
structures before entering them into multi-specificity design reduced the impact of alternating
backbone minimization with design. We hypothesize that backbone movement should have a
larger impact on design of structures that have not been pre-minimized. To test this hypothesis,
we repeated the benchmark with structures that had not been pre-minimized, and performed
multi-specificity design with three protocols: 1) fixed backbone design, 2) alternating design
with minimization of φ, ψ, and χ angles, and 3) alternating design with backrub movements.
The backrub motion involves rotation of a rigid backbone around axes between nearby Cα
atoms, and has been shown to recapitulate alternative backbone conformations in high-resolu-
tion crystal structures [30] as well as improving prediction of the conformation of point mutant
side chains [31]. We predicted that a design protocol including backrub motions between
design rounds should result in the highest agreement to evolutionary sequence profiles, given
the sampling of more biologically relevant conformational space than simple minimization.
We therefore analyzed the similarity to evolutionary sequence profiles for the top ten designs
produced by the three methods and compared to evaluate whether backbone motion in this
context confers any additional benefit. As expected, incorporating backrub movements results
in a statistically significant increase in similarity to evolutionary profiles as compared to a fixed
backbone protocol or one involving minimization (Fig 7). This agrees with previous studies
indicated that backrub motions are able to sample biologically relevant conformational space,
and shows that backrub motions can be incorporated in a multi-specificity context to provide
more robust results in terms of evolutionary sequence recovery.

Advantage of multi-specificity vs. single-state design
In previous works involving both germline antibodies and promiscuous proteins, the difference
in sequence recovery between sequences generated by single state and multi-specificity design
has been analyzed [14,19]. Multi-specificity design in both cases was shown to recover the
native or germline sequence at a higher rate than single state design, supporting the proposition
that the increased performance of multistate design justifies the increased computational com-
plexity. Given the increased performance of RECON in native sequence recovery, we hypothe-
sized that multi-specificity design performed by RECON would result in a larger difference in
germline vs. mature sequence recovery in the common germline antibody dataset. We therefore
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performed fixed backbone single state design for each complex in this dataset and calculated
recovery of the germline sequence and the mature antibody sequences. We can recover the differ-
ence in germline and mature sequence recovery as observed in [19], and show that design per-
formed by RECON results in a larger difference between germline and mature sequence recovery
compared to MPI_MSD (S2 Fig). We can therefore conclude that in these cases RECON is more
robust at generating germline-like, multi-specific sequences compared to MPI_MSD.

Discussion

Summary of results
We have developed and benchmarked a new method for multi-specificity design, REstrained
CONvergence in multi-specificity design (RECON). This algorithm operates by allowing each
state to search sequence space independently with a restraint system that gradually encourages
convergence between different states on a common sequence. Allowing each state to adopt a
unique sequence reduces the space of sequences required to search in order to find a native-
like low energy solution. In two separate benchmark sets consisting of ten total cases, we were
able to show that RECON, both with and without iterative backbone minimization cycles, was
able to more accurately recapitulate the native, multi-specific sequence of input proteins than
the existing MSD application in ROSETTA, MPI_MSD. In addition, we analyzed agreement of
designed sequences with observed evolutionary sequence profiles to measure how well MSD
simulates natural sequence tolerance. In large design problems with many residues being opti-
mized simultaneously, RECON was able to create sequences that more closely mirrored the
natural distribution of sequences seen in evolutionary profiles.

Fig 7. Incorporation of backbonemotion into RECON recapitulates evolutionary sequence profiles in
un-minimized structures.Multi-specificity design using RECONwas repeated on structures that had not
been previously energy minimized to evaluate the benefit of incorporating backbone movements. Designs
were generated using either a fixed backbone protocol (Fixed BB), alternating rounds of φ, ψ, and χ angle
minimization (Minimize), or using backrub motions (Backrub). P values were calculated by a paired two-tailed
t test.

doi:10.1371/journal.pcbi.1004300.g007
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Diversity in predicted sequence tolerance
In this study we analyzed the degree of convergence of a designed protein sequence profiles
with the natural sequence variation seen in evolutionary homologs. It is well known that many
proteins tolerate a wider variety of sequences than simply the native sequence [13,29,32,33]—
therefore a major goal of multi-specificity design is to recover not only the native sequence of a
protein, but also sequence variations that are tolerated by all binding partners. We found that
RECON is able to recover evolutionary sequence profiles more effectively in large complexes—
however, it is clear from analysis of sequences sampled by each method (S1 Fig) that
MPI_MSD is exploring a much larger sequence space. In certain cases this diversity of sam-
pling may be desired, especially in cases where the interface with both binding partners is com-
patible with a large number of sequence polymorphisms. Our benchmark cases suggest that
sampling near the energy minimum for each individual state is sufficient to recover the
sequences compatible with all states. However, in cases where generating sequence diversity is
at a premium, for example to explore the tolerated sequence space of a given backbone, it may
be advantageous to use RECON and MPI_MSD as complementary approaches.

Comparison of rotamer packing algorithms
RECON in the current study was used with the standard ROSETTA simulated annealing rotamer
optimization protocol [34]–however, other rotamer optimization methods have shown supe-
rior performance in certain instances. For example, MPI_MSD uses a modified form of the
FASTER algorithm [35], referred to as backbone-minimum-energy conformation followed by
single-residue perturbation/relaxation (BMEC-sPR) [15]. Leaver-Fay et al. compared the effec-
tiveness of these two algorithms and found that BMEC-sPR consistently reached the global
minimum solution in a higher proportion of cases [15]. Additional rotamer optimization algo-
rithms have been adapted for use in MSD, such as dead-end elimination [36], probabilistic
graphical models [37], and iterative batch relaxation/single perturbation and relaxation [35].
The benefit of RECON is that it can be adapted to work with any single state-compatible rota-
mer optimization method, as communication between different states is conducted solely by
the restraint system. This opens up the possibility of adapting many more optimization meth-
ods for MSD.

Fixed backbone versus backbone flexibility in restrained multi-state
design
One important benefit of RECON is the ability to incorporate backbone motion into anMSD
protocol. Traditionally protein flexibility in MSD has been modeled by including multiple back-
bone conformations as input states [9,13,16,32,38]. This is a reasonable strategy for running
MSD using RECON. However, RECON offers the benefit that each state can be subject to addi-
tional backbone minimization between design rounds. When incorporating backbone motion
into design the conformational and sequence space explodes, making it difficult to reach a global
minimum. However the fact that RECON reduces the sampling needed to reach the optimal
sequence allows for more search space to be explored. We have shown that incorporating back-
bone flexibility in the form of backrub motions can improve accuracy of sequences when applied
to un-minimized structures. Single state design protocols have successfully incorporated back-
bone movement, allowing the introduction of mutations that would have been unfavorable on
the original backbone [1,8,27]. The ideal protocol for flexible backbone design remains elusive,
considering the different methods of backbone perturbation [28,30]. In addition it remains
unclear how to best alternate fixed backbone sequence optimization with backbone motion [39].
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RECON opens up the possibility of incorporating these backbone design methods into an MSD
context.

Negative design capabilities
One of the most challenging aspects of MSD is the inclusion of unfavorable states to destabilize.
The current implementation of RECON is limited in scope compared to approaches such as
MPI_MSD due to the inability to perform negative design to disfavor certain states. This limi-
tation is not fundamental as in principle unfavorable states could be designed against with an
energy penalty. However, it is outside the scope of the current work to benchmark such an
approach. MSD has been successful in engineering proteins when both including [6,7,10,12]
and ignoring [9,13,38] these negative design states. Bolon et al. have shown that including neg-
ative states produces designs that exhibit better specificity between competing states [40]–how-
ever, this comes at the cost of target protein stability [22,40], and therefore may not be ideal for
every design problem. In addition, negative design states result in a significantly more compli-
cated computational protocol–differences between backbone conformations can cause failures
in rotamer placement that lead to artificially high energies [15]. This complicates the inclusion
of multiple backbone states in an MSD problem, which mimics the natural flexibility of a pro-
tein in solution and results in higher quality designs [9,13,16,38]. Explicit negative design is not
currently supported using RECON–the lack of an explicit fitness function makes it difficult to
reconcile energies of positive states with negative ones. Grigoryan et al. used an intriguing
“specificity sweep” protocol that alternates design rounds optimizing stability of positive states
with specificity rounds, accepting mutations that destabilize the negative states without a nega-
tive effect on the positive ones [10]. A similar strategy could incorporate RECON to optimize
stability and specificity without explicitly designing against a negative state.

Integration of restrained multi-state design into ROSETTA code base
RECON was designed with the intent to be easily integrated into the ROSETTASCRIPTS computa-
tional framework [41]. To this end we emphasize that RECON is compatible with any other
protocol that is available within ROSETTASCRIPTS, which is not available for MPI_MSD. This
makes it easier for users with experience running SSD protocols in ROSETTASCRIPTS to expand
their capabilities by including RECON. This can be used to include additional conformational
states, explicitly model bound and unbound conformations, or simultaneously design against
multiple partners. We describe in the supplemental materials (S1 File) a comprehensive exam-
ple of how to run RECON in an XML file.

Methods

Selection of datasets for benchmark
Common germline gene-derived antibody complexes were selected and processed as in [19]–
briefly, candidate complexes were selected by querying the Immunogenetics Information Sys-
tem (IMGT) 3D structural query system for antibodies derived from either VH1-69, VH3-23, or
VH5-51 germline genes [21]. Only complexes containing protein or peptide ligands were con-
sidered. Common germline antibodies were only considered for multi-specificity design when
derived from the same allele. Promiscuous proteins used were derived from the multi-specific-
ity design study described in Humphris et al. 2007 [14]. Complexes were selected to maximize
diversity of structure and function, as well as to select proteins with diverse ligands.
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Preparation of structures for design simulations
Structures were downloaded from the Protein Data Bank (PDB; www.rcsb.org), and manually
processed to remove water and non-proteinogenic molecules. Any chain breaks were closed
using kinematic loop closure [42]. Due to extensive chain breaks in CDR loops, chains H and L
in structure 3GBM were replaced by the same chains in 3GBN. Structures were subject to
energy minimization in ROSETTA using the talaris 2013 score function [17]. The lowest energy
model of 50 energy-minimized models for each complex was selected for design.

Multi-specificity design
For common germline antibody multi-specificity design, amino acid sequences deriving from
the VH gene were aligned using ClustalW sequence alignment [43], and positions that varied in
any of the antibodies were specified for design. Germline sequences were inferred from IMGT/
3D Structure DB [21]. Designable residues in promiscuous proteins were selected as those pres-
ent in the interface of all binding partners. To define interface residues, a set of filters was
applied to select residues that are likely to engage in interactions with the opposing chain. The
first filter eliminates any residue with a Cβ distance larger than 10 Å from the closest residue in
the opposing chain. Residues were then selected that either had a heavy atom within 5.5 Å of a
heavy atom across the interface, or those with an angle of less than 75° between two vectors,
Cα-Cβ of the residue and Cβ-Cβ to the closest residue Cβ on the opposing chain. This vector
angle filter allows inclusion of residues where the sidechain is oriented to face the opposing
chain. In addition, any residues at the interface on the side of the binding partner were speci-
fied for repacking. Identical residues for design and repacking were used for both RECON and
MPI_MSD. For RECON benchmarking, fixed backbone design was used with 4 rounds of rota-
mer packing. RECON constraints were ramped through the 4 rounds of design using conver-
gence restraints of 0.5, 1.0, 1.5, and 2.0 REU. Sequence convergence was enforced at the end of
the protocol using a greedy selection algorithm. RECON was also benchmarked with backbone
minimization–this protocol was identical to the fixed backbone protocol with the addition of a
cycle of minimization of φ, ψ, and χ angles after each design round. At the end of the backbone
minimization protocol we performed one full round of a ROSETTA relax protocol, which
involves rotamer packing and minimization using a gradually increasing repulsive force [44].
In simulations performed with backrub motions, all backbone atoms on the protein chain
being designed were specified as pivot residues. The backrub motion as implemented in
ROSETTA is described in detail in [31]. MPI_MSD was run with default parameters, with the
number of rounds defined as 15 times the number of designable residues [15]. For MPI_MSD,
the fitness function was defined as the sum of energy of the complexes. Single state design was
run as four rounds of fixed backbone rotamer optimization, using the same designable and
repackable residues as previously specified. The talaris 2013 scoring function was used for all
methods of design.

Quantitative measures for analysis of resulting sequences
For each complex, 100 designs were created as described using both RECON and MPI_MSD
applications. Sequence logos were created using the Berkeley web logo server (http://weblogo.
berkeley.edu). Bitscore was computed for each design trajectory, defined as the Shannon
entropy of each amino acid occurring at each designed position, described in [19] [45,46]. Bit-
score was calculated using the following equation: Ii = pi x log2(20 x pi), where i represents the
amino acid and pi is the frequency in the top ten designs. When pi is 100% the bitscore becomes
4.32, which was used as the maximum possible bitscore in our calculations. To calculate native
sequence recovery, the summed bitscore of the native amino acid at each position was divided
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by the sum of the bitscore of all amino acids at all positions. Designs were analyzed on the basis
of the fitness of the top ten designs, with fitness defined as the sum of ROSETTA energy of all
states, and native sequence recovery. ROSETTA energy was reported in all cases with convergence
restraints subtracted from the total.

To generate an evolutionary sequence profile we used PSI-Blast with default parameters,
querying a non-redundant protein database [25,47]. This position-specific scoring matrix
(PSSM) of amino acid frequencies was then compared to a PSSM constructed from observed
frequencies in the top ten designs by fitness resulting from RECON or MPI_MSD. To compare
PSSMs we used a modified Sandelin-Wasserman similarity score [26]. This score was calcu-
lated by computing the squared difference for each amino acid frequency at each position. The
squared difference was summed for all amino acids at a given position, and subtracted from
two to yield a similarity score from 0 (no similarity) to 2 (identical). This value was then nor-
malized by a factor of two to yield a percent similarity for each position and summed over all
designed positions to give an overall similarity score. To reduce background noise when com-
paring PSSMs we only compared positions that had any observed mutations in the top ten
designs produced by any design method. Inclusion of positions where no mutations are
observed would inflate evolutionary similarity values for all methods. This reduced the total
number of positions considered from 200 among eight benchmark sets to 97. In the benchmark
cases of un-minimized structures, eliminating positions with no variation by any method left
151 of 200 possible positions.

Supporting Information
S1 Table. Post-minimization fitnesses of benchmark sets. Structures generated by design
were energy minimized to relieve small clashes. Fitnesses reported are the sum of energy of all
states. Best values in each row are shown in bold.
(DOCX)

S2 Table. Performance of a control greedy selection algorithm.Design of benchmark cases
was repeated for a greedy selection algorithm, which lacks the ramping convergence restraints
of RECON. This algorithm performs a single round of unrestrained design followed by a
greedy selection of amino acids that maximize fitness over all states.
(DOCX)

S3 Table. Non-converging positions in the VH5-51 benchmark set. Failure to converge by
the end of the RECON convergence restraint protocol was counted for each designed residue
in the VH5-51 benchmark set, over 100 design trajectories.
(DOCX)

S1 Fig. The sequence space explored by RECON and MPI_MSD is compared to the
sequence profiles of the top ten designs for the VH5-51 benchmark case. Sequence space was
determined as any amino acid that was sampled at any point throughout the design protocol.
A similarity score was calculated between the sequence space explored by an algorithm and the
top ten designs produced by the same algorithm.
(EPS)

S2 Fig. Germline and mature sequence recovery for sequences generated by RECON and
MPI_MSDmulti-specificity design, compared to the sequences generated by single state
design.
(EPS)
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S1 File. Protocol capture file containing in-detail description of the computational meth-
odology, as well as scripts useful in generating input files and analyzing results.
(PDF)
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