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The automated structure elucidation of organic molecules from experimentally obtained properties is extended
by an entirely new approach. A genetic algorithm is implemented that uses molecular constitution structures
as individuals. With this approach, the structure of organic molecules can be optimized to meet experimental
criteria, if in addition a fast and accurate method for the prediction of the used physical or chemical features
is available. This is demonstrated using 13C NMR spectrum as readily obtainable information. 13C NMR
chemical shift, intensity, and multiplicity information is available from 13C NMR DEPT spectra. By means
of artificial neural networks a fast and accurate method for calculating the 13C NMR spectrum of the generated
structures exists. The approach is limited by the size of the constitutional space that has to be searched and
by the accuracy of the shift prediction for the unknown substance. The method is implemented and tested
successfully for organic molecules with up to 20 non-hydrogen atoms.

INTRODUCTION
Thousands of substances are synthesized every day, and

their structures need to be elucidated or validated. Conse-
quently the daily routine work of structure elucidation of
molecules produced by organic synthesis, especially by
combinatorial synthesis, is still one of the most important
demands on chemists. Tools that assist sprectroscopists to
elucidate the structure of organic molecules, or are even able
to predict the structure of unknowns automatically, are
therefore of general importance.
To automatically determine from any source of experi-

mental data the structure of an organic molecule, two steps
of data processing are performed: A structure generator
creates proposals for the unknown molecular structure. A
filter validates these proposals usually by comparing easily
derivable properties of the generated molecules with the
corresponding experimental values and minimizing the
deviation. In theory it is possible to determine the chemical
structure of any compound from just one experimental
quantity, provided that every compound has its own char-
acteristic experimental quantity and this value is obtainable
without any experimental uncertainty. Even if these pre-
requisites are obtained, two additional requirements are
necessary: (1) the experimental value can be calculated from
the molecular structure with infinite precision and (2) infinite
computational power is available.
Under these conditions all possible structures can be

created, the known experimental value can be computed, and
a comparison with the experimentally observed value yields
an unambiguous answer as to which of the hypothetically
proposed structures is the unknown.
However, in practice these requirements are impossible.

Even if the experimental parameter differs for every mol-
ecule, it can only be measured within experimental uncer-

tainty. If the number of possible structures is large enough
and if the error of the property calculation is taken into
consideration, “false” positives will be found with smaller
deviation of the calculated and the experimental value than
the true solution has. Therefore, it is only possible to obtain
a hit list of structural proposals ranked according to their
similarity to the experimental data. In this hit list the correct
solution is provided together with false positives. The
introduction of additional experimental data helps to over-
come this limitation. A more challenging problem is the
infinite number of possible structures. It is impossible to
compute an infinite number of proposed structures in a finite
period of time. Therefore, the key point is the development
of “intelligent” structure generators that include already
available experimental data during the generation of struc-
tures and create therefore only a finite number of probable
structures, each having only a small deviation from the
experimentally obtained data. The earlier the comparison of
the experimental value with the values calculated for the
generated structures is performed and the result is incorpo-
rated into the further structure generation process, the more
exact the structural space can be defined that has to be
searched. This decreases the required computation time.
A frequently used first restriction is the molecular formula.

This boundary condition ensures a finite number of possible
structures, which then allows a computation of the entire
structural space in a finite period of time. The generation of
a structural space can be separated into two steps: The
generation of all possible constitutions (a constitution formula
contains all connectivity but no stereochemical information)
and the subsequent generation of all possible stereoisomers
for every constitution formula.
Molgen is a powerful structure generator that performs

both those steps and creates all possible structures having a
given molecular formula.1,2 A subsequent calculation of a
predictable parameter (for example the 13C NMR spectrum)
for all these structures and a comparison with the experiment
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would provide a straightforward approach for automated
structure elucidation. However, even for a small number of
atoms the computation time increases to an impractically
large size.
The CoCon approach by Lindel, Köck, and Junker uses

connectivity information from two-dimensional NMR spec-
troscopy in addition to the molecular formula and so becomes
usable for much larger molecules.3,4 CoCon produces all
constitutions that fulfill the introduced connectivity informa-
tion. However, since CoCon uses only connectivity informa-
tion, it does not differentiate stereoisomers that may occur
in the generated constitutions. Thus Molgen generates a set
of all possible constitutions, whereas CoCon reduces this
number. In some cases only one constitution fulfills all the
connectivity information. However, often CoCon presents a
large set of possible constitutions, more than can be validated
by hand.
The collection of connectivity information from two-

dimensional NMR spectra is time-consuming and difficult
to automate. The one-dimensional 13C NMR chemical shift
is not only much easier to obtain but also contains diverse
constitutional and stereochemical information. Further, ar-
tificial neural networks offer a fast and accurate tool for
calculating the 13C NMR spectrum of organic compounds.5
Recently we demonstrated that a combination of CoCon with
a subsequent comparison of the experimental and calculated
13C NMR chemical shifts is an effective and efficient
possibility to decrease the number of possible constitutions
presented by CoCon alone.6
A very powerful approach named SpecSolv uses the 13C

NMR spectrum in combination with the Specinfo database.7,8
The molecular constitution formula can be elucidated only
from their 13C NMR chemical shifts by a search for similar
substructure spectra in the database and reassembling the
substructure fragments found.
In contrast to all these approaches, the implementation

introduced here uses an entirely new procedure of intelligent
structure generationsa genetic algorithm. This allows one
to circumvent certain limits and disadvantages of previous
approaches: (1) The time-consuming determination of con-
nectivity information for CoCon by two-dimensional NMR
spectroscopy is replaced by the much easier and rapidly
obtainable chemical shift value. (2) The genetic algorithm
is able to use the generated structures immediately as a basis
for further optimization process. While Molgen or CoCon
generate structural spaces of predefined size and content, the
structural space generated by this genetic algorithm is
dynamically determined. (3) In contrast to SpecSolv the
generation of a structural database by reference to thousands
of experimental spectra is no longer necessary and does not
limit the searched structural space. The entire space, includ-
ing all possible structures, can be investigated unaffected by
either preferred and neglected regions in a reference database.
(4) Additional structure information (including connectivity
information from two-dimensional NMR spectroscopy) can
be implemented easily as boundary conditions. (5) The
generated structures can be ranked by their chemical shift
deviation to the target spectrum and not only by a binary
quality factor (e.g., in line or not in line with the connectivity
information - CoCon).
Since not all structures of the structural space are generated

with such an implementation, there can be no guarantee that

the correct solution structure is actually created. We will
describe one implementation of such a genetic algorithm and
discuss its advantages and its limitations. First we will give
a brief summary of existing neural networks and genetic
algorithms used in context with NMR spectroscopy. The
usefulness of the 13C chemical shift values for structure
elucidation is reprised.
Methods of artificial intelligence are widespread and

accepted methods for data analysis in chemistry and biology.9
Neural networks have been suggested for more than 10 years
as solutions for a wide range of optimization problems. They
are intensively used for the prediction of NMR chemical
shifts of organic substances, in particular for carbon
atoms.5,10-19 Genetic algorithms are of special interest due
to their ability to solve complex optimization problems on
complex hyperdimensional surfaces with many local minima.
In combination with NMR spectroscopy they are imple-
mented for the assignment and analysis of spectra.20-25
Due to its combination of spectral simplicity and the large

content of complex chemical information, the 13C NMR
chemical shift value is well suited for the storage in
databases7,26 and application in intensive numerical analysis.
A triple of three values, chemical shift, intensity, and
multiplicity, contains detailed information about the chemical
environment of the most common atom in most organic
molecules, carbon. Many approaches for the prediction of
the chemical shift value and for its use in further analysis
are suggested besides these already listed applications
involving neural networks. Only a few are mentioned
here.27-30 Moreover the chemical shift plays an important
role in the daily routine work of structure elucidation and
validation in organic chemistry. Consequently, a fully
automated structure elucidation program based exclusively
on 13C NMR data is a dream of NMR spectroscopists.
Theory. A genetic algorithm is a method of producing

new individual examples from combinations of previous
individuals. The algorithm has the same logical structure as
inheritance in biological systems and much of the terminol-
ogy is similar by analogy. So, for example, a genetic
algorithm describes the previous examples as “parents” and
the combinations produced as “children” or “offspring” or
individuals belonging to the next generation. The identity
of a particular individual is determined randomly but by a
process which is probability-weighted. The probability that
an individual will be produced and participate as a parent in
a succeeding generation must be defined by some standard.
For an optimization process, the suitability of an offspring
can be assessed using some “fitness” function. This is a direct
analogy to Darwin’s evolutionary rules of selection, survival
of the fittest. One algorithmic process that mimics biological
evolution is described as generating mutation. How these
relationships work out for a nonbiological sequence of events,
a synthetic calculation occurring entirely within a computer,
will now be described in more detail.
The implementation of every genetic algorithm invokes

three data processing steps: selection, recombination (cross
over) and mutation. For optimizing molecular structures, a
genetic code needs to be defined that describes them. Figure
1a) visualizes how a vector of bond states between all
(atom-atom) pairs can be defined from the connectivity
matrix of a molecule. This vector provides a suitable genetic
code for the constitution of an organic molecule. Stereo-
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chemistry is not considered in this implementation, since it
was not possible to distinguish between stereoisomers using
the selection procedure as discussed below. A set of
randomly generated constitutions is taken as the starting
parent population. The members of this population satisfy
only the molecular formula, which has to be known in
advance. Iteratively, the population undergoes the processes
of selection, recombination, and mutation to form a child
generation which can then be used as the next parent
generation (Figure 1b)).
Selection. While recombination and mutation can be

implemented independently from boundary conditions, the
selection process is affected by using the 13C NMR spectrum
as a “fitness function”. As mentioned earlier, a fast and exact
calculation method for this fitness function is necessary to
implement a genetic algorithm. The 13C NMR chemical shift
can be determined most efficiently for this purpose using
artificial neural networks. Once trained, they are fast and
exact. The implementation of neural networks used in the

following approach is described in the literature5 and is
therefore only briefly summarized below.
The spectra can be predicted for all organic substances

that contain exclusively C, H, N, O, P, S or the four halogens
(F, Cl, Br, I). To obtain the spectrum of a molecule the
chemical shift of every carbon atom is successively calculated
in an individual run. The environment around the carbon
atom of interest is subdivided into six spheres. All atoms
inside these spheres are again classified as belonging to one
of 28 previously defined atom types. The types consider the
atomic number, hybridization, and number of bound hydro-
gen atoms. The 28 dimensional vector containing the number
of atoms of every atom type in a particular sphere is
accomplished by two sum parameters holding the number
of hydrogen atoms in the sphere (hydrogen is not considered
as one of the 28 atom types) and the number of ring closures.
This vector contains now 30 numbers and is collected for
atoms belonging to one out of six spheres separately.
Moreover the information is collected a second time, but
only for atoms that belong to a conjugated π-electronic
system together with the carbon atom of interest to consider
the special influence of such systems on the chemical shift
value. Therefore a vector of 360 ()30‚6‚2) numbers de-
scribes the carbon atom environment and serves as input for
the neural networks. Nine of these 28 atom types describe
carbon atoms. For each of the nine types an individual neural
network is trained using the overall number of about
1 300 000 chemical shifts out of the Specinfo database.7 The
number of hidden neurons in the single hidden layer varies
from 5 to 40, depending on the number of training examples
for the carbon atom type. One output neuron calculates the
chemical shift. The average deviation of this method is as
low as 1.6 ppm relative to an independent database of about
50 000 chemical shifts. Essential advantages of this method
are the fast, exact, and database independent shift prediction
for all organic molecules. Since spherical description of the
carbon atom environment used in the method does not
contain stereochemical information, the predicted chemical
shift spectrum is the same for all stereoisomers for any
particular constitution formula. Consequently the genetic
algorithm implemented here can only optimize the molecular
constitution relative to the NMR spectrum. Therefore, the
genetic code needs also only to define the constitution. If
stereochemistry had been considered in estimating the
chemical shift, the introduction of stereochemical descriptors
in the genetic code would allow the definition of stereo-
chemistry in the structures elucidated.
The chemical shifts of all carbon atoms of a constitution

are calculated by the artificial neural networks and sorted
by their size. The “fitness” of every single carbon atom i is
now the absolute deviation between its experimental and the
corresponding calculated chemical shift value: |δcalc

i (13C)
- δexp

i (13C)|. The fitness of the whole molecular constitu-
tion formula is given by the root-mean-square deviation
(RMSD) over all N carbon atoms:

(Figure 2). The multiplicity of a signal can be easily
incorporated, if experimentally obtained: The absolute

Figure 1. The connectivity matrix of a randomly created constitu-
tion with the molecular formula C6H13NO2 is given. From this
connectivity matrix the genetic code is obtained by rearranging the
a triangular half matrix into a vector (a). This vector contains now
the bond state between all (atom - atom) pairs of the molecule.
Part (b) of the figure visualizes the general implemented procedure.
The molecular formula (obtained e.g. from mass spectroscopy) is
used to generate a random set of m constitutions that fulfill that
molecular formula. This set is now valuated by calculating the 13C
NMR spectrum and comparing it with the experimental data. The
lower the ∆(13C) value the higher is the probability that a molecule
is considered for recombination. A new generation is formed by
recombining two parent molecules m times. Optionally some of
these m new constitutions can undergo a mutation or l of them can
be replaced by the l fittest parent constitutions. This cycle of
selection, recombination, and mutation is repeated until ∆(13C) is
minimized.

∆(13C) ≡ "1

N
∑
i)1

N

(δcalc
i (13C) - δexp

i(13C))2
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deviation between the experimental and the calculated
multiplicity for every carbon atom i |Mcalc

i - Mexp
i | is

multiplied by a factor (“multiplicity deviation factor” )MDF
(in ppm)) and added to the absolute deviation of the chemical
shift. The fitness ∆(13C) becomes now

The lower the ∆(13C) value of a structure the higher is its
fitness and the higher is its probability of participation in
the recombination step of the genetic algorithm.
Recombination. Two molecules from the parent genera-

tion are selected to form the child molecule. The smaller
the ∆(13C) value of a molecule the higher is its probability
to be considered as parent. This probability for a single
molecule j out of a population of m constitutions is given
by pj ) [∆j(13C)]-1/∑i)1

m [∆i(13C)]-1. After this selection, all
possible (atom - atom) pairs in both parents are taken, and
the bond type between them is analyzed (0 ) non bounded,
1 ) single bond, 2 ) double bond, or 3 ) triple bond).
Randomly one out of the two possibilities for every (atom
- atom) pair is taken for the newly generated child structure
(Figure 3).
Since hydrogen atoms are not explicitly taken into

consideration but are added to the free valences afterward,
the molecular formula needs to be checked after a new child
constitution is generated. If the number of potential hydrogen
atoms in the generated constitution is not the same as defined
in the target molecular formula, bonds must be added or
deleted until this deviation is corrected to zero. For this
purpose the same function is used as for mutation (see
below). Moreover it is necessary to ensure that a single
molecule is formed and not a set of two or three fragments
with the correct overall molecular formula but not connected
to each other. After both boundary conditions are fulfilled,

the new molecule is accepted as a member of the newly
formed population.
Mutation. A “mutation” is implemented by modifying

simply bonds. Two atoms are randomly selected and a bond
is deleted (or the bond type is decreased by one) while, for
two other randomly selected atoms, a bond is inserted (or
the bond type is increased by one, Figure 4). A deletion is
always combined with an insertion, so that the total number
of hydrogen atoms remains constant. Also this process has
to be controlled so that only one molecule and not a set of
fragments is created.
Figure 5 illustrates the formation of a single generation

in the form of a simplified flowchart diagram. By repeating
the procedure of subsequent recombination and mutation, m
molecules for the child generation are created out of the m
parent molecules. Optionally the l fittest molecules of the
parent generation replace the l worst molecules of the child
generation to ensure that the fittest constitutions are not lost.
To enable the optimal use of multiprocessor computers n
populations can be calculated in a parallel manner without
interactions. This procedure takes advantage of the well-
known fact that in a genetic algorithm a set of small
independent populations converges faster than one large
population.

Figure 2. The 13C NMR spectrum for a newly generated
constitution (a) is calculated by artificial neural networks (b). By
comparing this spectrum with the experimentally obtained spectrum
(c) the ∆(13C) value can be computed as the RMSD of all single
deviations (d). The ∆(13C) is taken as the fitness function in the
selection process of the genetic algorithm.

∆(13C) ≡

"1

N
∑
i)1

N

(|δcalc
i (13C) - δexp

i (13C)| +MDF‚|Mcalc
i - Mexp

i |)2

Figure 3. Recombination of two molecules out of the parent
generation (a, b) to form a new molecule (c) that becomes a part
of the population in the next generation. The gray shaded areas of
the parent molecules are linked to form the new molecule. Below
each constitution formula the corresponding genetic code of the
molecule is given. The vector representing the newly formed child
constitution contains at every position exactly one of the both
possible values obtained at the corresponding positions in the parent
molecule vectors.

Figure 4. The process of mutation is illustrated on two example
constitution (a) and (b). The gray shaded area is again conserved
in the mutated constitution (c), while the white marked bond is
changed. Below each constitution formula the corresponding genetic
code of the molecule is given. The vector changes consequently
exactly at two positions.
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The recombination probability (RP) and the mutation
probability (MP) are parameters systematically varied during
the iterative calculation process. RP is the probability that a
child is generated by combining two parents (recombination)
and not by copying a molecule already in the parent
population (no recombination). MP defines the probability
that a child generated undergoes a mutation (compare Figure
5). It is well-known that a high mutation rate at the beginning
of a genetic algorithm ensures a fast convergence but later
high mutation rates are rather counter-productive and simple
recombination achieves a better fitting. This fact is also
comparable to the evolution of life on the earth: (1) High-
intensity UV irradiation caused high mutation rates in the
beginning of evolution of life but both UV levels and
mutation rates are lower now. (2) Creatures at a low level
of evolution frequently reproduce without recombination,
whereas creatures on a high level of evolution exclusively
reproduce by recombination.
In keeping with the biological analogue, RP and MP are

changed during the genetic algorithm. In principle, they could
be independently defined for every evolutionary step of the
optimization procedure. However, it is sufficient to predefine
the RP and MP for certain evolutionary steps and change
the values linearly between these points to approach the
defined values.
The incorporation of additional information is possible by

defining a good and a bad list of fragments that either need
to be part of the molecule or are forbidden to use. In the
first case, the fragments are incorporated during the initial
creation of random molecules and not changed during the
further optimization process. In the second case, generated
structures that contain forbidden fragments are excluded and
not used in the child generation. To avoid a reduction of the
genetic pool of a population it is excluded that identical
individuals that might be formed during the algorithm are
considered for one population more than a single time.

RESULTS AND DISCUSSION
Three experiments are performed to evaluate a genetic

algorithm implemented as discussed above: In the first
experiment the parameters are optimized, and both the
structural space and the generated populations are analyzed
for a relatively small molecule. In a second experiment the
previously optimized parameters are used to perform a fully
automated structure elucidation for a small database consist-
ing of molecules with 9-16 non-hydrogen atoms. In a third
class of calculations, the limitations of this method are
examined by investigating larger molecules with up to 20
non-hydrogen atoms. In this case an individually optimized
setup and the use of additional boundary conditions become
necessary.
For reasons of computation time the introduced parameters

need to be optimized for a relatively simple example. For
the same reason not all possible interactions between the
parameters can be analyzed in detail. It is further assumed
that the optimized values for these parameters can be later
scaled for larger molecules. Moreover the investigation of a
small molecule allows a hand analysis of the generated
populations resulting in a deeper insight into the operations
performed during the optimization. Isoleucine (C6H13NO2)
is chosen because it contains heteroatoms and a double bond.
Since it has only nine non-hydrogen atoms and only one

Figure 5. Flowchart diagram for one single generation performed
during the genetic algorithm. The formation of n child populations
containing m constitutions out of n parent populations is illustrated.
The selection is performed by the calculation of the ∆(13C) values.
Recombination and mutation are performed according to the
probabilities set with the RP and MP value. To ensure that a new
constitutions is calculated one of both processes, recombination or
mutation, have to take place. Finally for every generated population
the l constitution with largest ∆(13C) value are replaced by the l
fittest molecules out of the parent set of structures.

STRUCTURE ELUCIDATION OF ORGANIC MOLECULES J. Chem. Inf. Comput. Sci., Vol. 41, No. 6, 2001 1539



double bond the number of possible constitutions is com-
parably low (23 946). Therefore the algorithm finds the
correct solution in a reasonably short time period. This allows
the optimization of parameters and an intensive analysis of
the algorithm itself. The total deviation between the experi-
mentally obtained and the neural network calculated chemical
shifts is ∆(13C) ) 1.12 ppm for isoleucin.
The parameters that need to be optimized are as follows:

the size of the population, m; the number of fittest individuals
conserved for the next generation, l; the number of parallel
calculated populations, n; the multiplicity deviation factor,
MDF; the recombination probability, RP; and the mutation
probability, MP. The product of m and n defines the size of
the genetic pool since it defines the overall number of indi-
viduals, whereas l defines the degree of conservative char-
acter. It is responsible for the fraction of replaced individuals
in each generation. Multiplicity deviation factor MDF
weights the influence of the deviation in the chemical shift
values with respect to a deviation in the obtained multiplicity.
The recombination probability RP and the mutation prob-
ability MP select the pathway for generating a new individual
and are therefore strongly interacting parameters. One out
of the two operations (mutation or recombination) has to be
performed in order to generate a individual different from
its parent(s) so that to ensure this mutation is forced if no
recombination was carried out. RP and MP define which
fraction of the newly generated constitutions is obtained by
recombination or mutation only and which fraction is
obtained by a subsequent application of both operations
(Figure 5). Figure 6 summarizes the results of the optimiza-
tion of all six parameters. Since m and n as well as RP and
MP are not independent with respect to each other, experi-
ments were applied to investigate those dependencies.
In a first experiment the size of the population is chosen

to be m ) 8, 16, 32, 64, 128. All other parameters are set to
be constant with l ) 0.25‚m, n ) 1, MDF ) 1 ppm. The
mutation probability is 100% during the first four steps and
decreases linearly to become 50% between the fifth and the
eighth generation. The recombination probability is set to
be 0% during the first four generations and increases to
become 100% after the eighth generation. For simplicity such
a program of RP and MP values will be given in the
following notation (MP: 01.04 )> 80.5∞ | RP: 00.04 )>
81.0∞) from now on. To obtain realistic results and avoid
the influence of the random start population the average
∆(13C) value of the best individual in 16 independent test
runs with varying randomly generated start populations is
computed for all experiments. All runs are stopped after the
16th generation. As visualized in Figure 6a the ∆(13C) is
generally smaller if larger populations are used. Since more
molecules are generated, the probability of creating a
molecule with a smaller ∆(13C) increases. However, the
generation of more molecules necessarily requires greater
computation time. Obviously, a direct comparison of experi-
ments with variable population sizes is not fair.
A realistic picture is given in Figure 6b. In these

experiments the number of calculated generations is increased
by a factor of 2, 4, 8, and 16 as the number of individuals
is decreased from 128 to 64, 32, 16, and 8, respectively.
Similarly, the fix points for the MP and RP values are
adjusted by these factors. The result of this systematic
adjustment is that the overall calculation time as well as the

number of generated structures are the same for all popula-
tions and a direct comparison becomes possible. The segment
between the second and the ninth generation for the popula-
tion with 128 individuals is plotted in comparison with the
corresponding parts of test runs with a smaller number of
individuals. As shown in Figure 6b an optimum size of the
population is achieved between 32 and 64 individuals.
Although the overall differences in results between the setups
are small, the setup with 32 individuals provides the fastest
decrease of ∆(13C) in the first period of the algorithm until
the fourth generation. An increased number of subsequent
mutations (as mentioned recombination does not take place
in this period) has advantages compared to a further increase
of the number of parallel calculated individuals. However,
if the number of randomly parallel generated structures is
too small (below 32 in this case), the starting points for the
optimization are badly sampled and the optimization velocity
suffers. After the fourth generation the setup using 64
individuals seems to become slightly favored. This is due to
the fact that here recombination becomes active, and
therefore the number of individuals in a generation plays an
increasing role. It defines the size of the “genetic pool” which
is incorporated into the recombination process.
In the next experiment (Figure 6c) the number of

conserved individuals l is optimized for a setup using m )
32 individuals. l is set to be 1, 8, 16, 24, and 31. The overall
influence is small. However, an optimum is obtained for l
) 0.25‚m. A remarkable worse convergence is obtained in
the case of 31 conserved individuals. This behavior is
plausible in this case due to the small number of changes in
the population with each new generation. Therefore the
constitutional space searched by the genetic algorithm is very
small.
The number of populations calculated parallel, n, is

optimized with the constraint of a constant overall calculation
time. A setup with (n|m) ) (1|128) is compared with (n|m)
) (2|64), (4|32), (8|16), and(16|8) in Figure 6d. The optimum
is obtained for four parallel calculated populations with 32
individuals each. Only a slight decrease in convergence is
obtained going to (n|m) ) (2|64). The algorithm is more
sensitive for a further decrease in the size of the population
m. The “genetic pool” becomes too small in these cases.
The multiplicity deviation factor MDF is optimized in

Figure 6e. The optimal value is MDF ) 1 ppm for this
example. This result is a compromise between the additional
usable information coded by the multiplicity, which causes
a better convergence compared to MDF ) 0 ppm, and the
higher complexity of the ∆(13C) hypersurface, which causes
a worse convergence in the case of higher values for MDF.
In the last plot of Figure 6 RP and MP are systematically

changed. All combinations of RP and MP equal 0.0 or 1.0
for the two periods between 0..4 generations and 8..16
generations are tested except the case where RP and MP
values are 0.0 at the same time (which would be of cause
meaningless since mutation is forced if no recombination
takes place, compare Figure 5). The test runs are sorted along
the left axis by the lowest ∆(13C) value for the fittest
molecule in the population after the 16th generation. Best
convergence is obtained for a high RP during the whole run
and especially in the second part of the algorithm. A high
mutation probability in the second part of the algorithm
seems to be counter-productive. The same is true for having
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no recombination at all. However, the differences between
the several test runs are again relatively small.
To get a better impression about the decision making

processes during the genetic algorithm Figure 7 represents
tracks on that isoleucine is formed for a test run with n ) 1,
m ) 32, l ) 8, MDF ) 1 ppm, and (MP: 01.04 )> 80.5∞ |
RP: 00.04 )> 81.0∞). In the 10th generation isoleucine itself
occurs for the first time. Up to this point the ∆(13C) values

for all 32 molecules in the population are given. The con-
stitutions that participate in the formation of isoleucine at
any point in the algorithm are represented together with the
performed mutation and recombination steps. Consistent with
the high mutation and low recombination probabilities during
the first part of the calculation only mutations take place in
this period. A rapid decrease of the ∆(13C) values is obtained,
which can be interpreted as a local minimization of the

Figure 6. The optimization of the parameters is illustrated for elucidating the isoleucine structure by the implemented genetic algorithm.
The ∆(13C) of the best found solution is always displayed on the z axis. The number of calculated generations is given at the x axis (in the
diagram (b) the axis is scaled), and the optimized parameter is displayed at the y axis. Regions on the surfaces coded in the same color are
isobars of ∆(13C). Diagram (a) proves that an increase of the population size m causes a faster convergence of the algorithm due to a higher
number of structures generated. Diagram (b) obtains the comparison of differing population sizes m rescaled to an equal number of generated
structures for a fair comparison. The results of the optimization of the part of conserved individuals l is optimized in diagram (c). The
number of parallel calculated populations n is again optimized with special care of a comparable number of generated structures in experiment
(d). The introduced multiplicity deviation factor MDF is investigated in experiment (e), and the influence of mutation probability MP as
well as recombination probability RP are visualized in diagram (f).
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Figure 7. Optimization process for the example molecule of isoleucine. For the 11 performed optimization steps the ∆(13C) values for all
generated constitutions are given. All constitutions that participate in the formation of the correct solution isoleucine in the 11th generation
are displayed, and the performed operation is marked by different arrows as indicated in the legend. The right column of the figure illustrates
the used recombination and mutation probability values in the single steps.
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constitutions on the ∆(13C) hypersurface which can then be
used in subsequent iterations as an optimal starting point for
the recombination process. With the increase of the RP value
the number of successful recombinations increases too.
However, the first effectively used recombination for the
formation of isoleucine takes place during the generation of
the eighth population in this example. During this eighth step
recombination is performed in combination with a subsequent
mutation. In the next two steps the isoleucine constitution
structure is formed by recombination steps without an
additional mutation. The average decrease of the ∆(13C) is
more moderate during these later steps. This second part of
the optimization can be interpreted as a search through the
low ∆(13C) ranges of the hypersurface for the global
minimum. Although constitutions with small ∆(13C) values
play statistically a more important role in the eventual
formation of the isoleucine molecular constitution, the
influence of some individuals with high ∆(13C) value is also
observed in the process. This behavior is typical for a genetic
algorithm.
The second experiment addresses the following two

questions: (i) the possibility of automated structure elucida-
tion by this approach and (ii) statistical analysis of a database
of molecules is performed. Six groups of 20 molecules
containing 9-16 non-hydrogen atoms, respectively, are
randomly selected from the Specinfo database.7 The experi-
mental 13C NMR chemical shifts are used as input for the
algorithm. The setup is equivalent for all 160 molecules with
m ) 8, n ) 32, l ) 8, MDF ) 1 ppm, and (MP: 01.025 )>
500.0∞ | RP: 00.525 )> 501.0∞). The algorithm is repeated
until either the right constitution is formed, another constitu-
tion with a ∆(13C)value smaller than the ∆(13C) value of the
correct solution molecule is created (accuracy limit) or a
maximum of 500 generations is achieved (time limit).
In the first case the automated structure elucidation is

successful, whereas in the second or the third cases the
method treated as a failure. If a constitution with a smaller
∆(13C) value than the correct solution exists. This happens
because the 13C chemical shift calculation is not exact enough
to determine unambiguously the correct constitution of the
unknown. The probability that such constitutions can be
found increases with the number of possible structures. It is
therefore the first limiting factor for the maximal size of a
molecular constitution structure solvable by this algorithm.
If a maximum of 500 generations is calculated without the
formation of the correct solution, the optimization process
is stopped and treated as a failure. The second limiting factor
is the time necessary to search the structural space.
Table 1 summarizes the results of this experiment. The

average ∆(13C) value for the 20 structures is within the

statistical deviation constant of about 1.1 ppm. Of 20
molecules tested in each case, the number of correct solutions
found decreases slowly from 20 to 14 as the number non-
hydrogen atoms increases from 9 to 14 atoms. It decreases
rapidly to 5 and 4 correct solutions for 15 and 16 non-
hydrogen atoms, respectively. For one out of 20 molecules
with 14 non-hydrogen atoms the calculation is stopped for
the first time because of a smaller ∆(13C) value for a
generated constitution than the ∆(13C) value of the correct
solution. For 15 and 16 non-hydrogen atoms 2 and 4
calculations are stopped for this reason (accuracy limit). Both,
the average calculation time and the average number of
generations performed increase dramatically with an increas-
ing number of non-hydrogen atoms. All calculations are
performed on a PII 450 MHz Processor equipped with
512MB memory. The number of generated structures per
minute increases more moderately. In comparing the last
value with errors typical for other structure generators (e.g.
Molgen) it has to be kept in mind that in this method not
only the constitutions are generated but also aromatic ring
systems must be identified and 13C chemical shift must be
calculated. Therefore, the genetic algorithm so implemented
is slower compared to Molgen, if only the number of
generated constitutions per unit time is compared.
The results prove that an automated elucidation of the

constitution is possible for up to 14 non-hydrogen atoms with
this setup. However, some points have to be addressed
here: For reasons of comparability all calculations are started
with the same parameter setup. The drop in the percentage
of correct solutions going from 14 to 15 non-hydrogen atoms
suggests that a setup optimized for isoleucine (with only nine
non-hydrogen atoms) may no longer be optimal for 15 and
16 non-hydrogen atoms. Specifically too small values for n,
m, and a maximum of only 500 generations avoid a higher
percentage of correct solutions for larger molecules. Also,
the inaccuracy in predicting the 13C chemical shift informa-
tion apparently plays an increasing role for molecules with
15 and more non-hydrogen atoms.
While the first problem can be solved by slightly modify-

ing the setup of the algorithm, in the second case additional
information beside the 13C chemical shift is necessary to
obtain an unambiguous result. This information can be a list
of forbidden substructures (a “bad” list) or a list of
substructures to use (a “good” list) in the easiest case. For
20 cases randomly selected form the nonsolved structures
the test run is repeated using a modified setup of l ) 16, m
) 64, and a bad list of only four fragments (directly bounded
heteroatoms: N-O, N-N, O-O, and allenyl fragments: C
) C ) C). For 17 out of these 20 examples the correct
solution is found. However, both limits are present and have

Table 1. Fully Automated Structure Elucidation for a Database Containing 8‚20 Molecules with 9-16 Heavy Atoms
number heavy atoms 9 10 11 12 13 14 15 16
average ∆(13C) (ppm) for correct solutionsa 1.23 1.13 1.19 1.00 0.97 1.10 1.18 1.15
number correct solutionsb 20 20 18 16 14 14 5 4
algorithm stopped with smaller deviation than targetc 0 0 0 0 0 1 2 4
average calculation time (min)d 2 2 13 23 37 51 85 123
average number stepse 18 13 82 154 197 258 375 414
generated structures per minute f 1952 1733 1605 1708 1375 1293 1133 863

a Average ∆(13C) (ppm) value of the 20 molecules representing the correct solutions. b Total number of molecules with correctly determined
solutions out of the 20 tested molecules. c Number of test runs stopped because a structure with a smaller ∆(13C) than the correct solution structure
was created out of the 20 testes molecules. d Total average calculation time in minutes on a PII processor with 450 MHz and 512 MB RAM. e Total
average number of steps until the algorithm was stopped. f Average number of generated and tested structures per minute.
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to be discussed. The algorithm would run in case of a real
unknown fully automatic until it is stopped by hand.
Afterward all generated structures with a ∆(13C) smaller than
the average error of the neural network prediction plus the
experimental deviation have to be considered as the possible
solution to avoid losing the correct solution due to the
accuracy limit. Due to the computational time limit, there is
no guarantee that the correct solution is within the generated
set of constitutions. Therefore this program also does not
replace the spectroscopist. It is able to solve a part of routine
problems in a fully automated mode. Afterward, the spec-
troscopist must validate the solutions and concentrate on the
cases not unambiguously solved. As discussed below, the
algorithm can however still assist solving those more
complex and interesting cases.
We will now demonstrate using a few examples the ability

of a more individual setup to solve the constitution for

molecules with up to 20 non-hydrogen atoms. Table 2
summarizes the results. Isoleucine is again listed as a first
example molecule to enable comparison. The second ex-
ample, histidine, is much more complex due to the increased
number of non-hydrogen atoms and double bond equivalents.
More than 89.5 million constitutions are possible for this
molecular formula. However, this problem is still solved
using a relative simple setup. Unlike all examples previously
discussed, a bad list is used here for the first time. If not
constrained, the genetic algorithm tends to create molecules
that contain bonds between heteroatoms: e.g., N-N, O-O,
or O-N. Because of the absence of chemical shift informa-
tion for such fragments, it is difficult to recognize such
structures as false solutions in cases where their overall
∆(13C) value is small. If these structural fragments can be
excluded, an accelerated convergence is obtained. It happens
that fragments such as C ) C ) C are also favored by the

Table 2. Molecular Structures, Parameters and Results Obtained for Some Example Molecules Solved by the Genetic Algorithm Approach

a ∆(13C) (ppm) value. b Total number of possible constitutions generated by Molgen if available. c Number of parallel calculated populations (n).
d Number of individuals in the populations (m). e Number of best ranked (small ∆(13C) value) individuals in the parent generation that are conserved
for the new child generation (l). fMultiplicity Deviation Factor defines the penalty added to ∆(13C) for a wrong multiplicity of a 13C carbon signal
in a generated structure. gMutation Probability is the probability that a generated structure undergoes a mutation in a certain part of the algorithm.
h Recombination Probability is the probability that a structure generated by recombination of two individuals of the parent generation and not by
just copying and mutating an individual of the parent generation. i Included structural fragments that have to be used in all generated structures and
excluded structural fragments that are forbidden in all generated structures. j Total number of steps until the correct solution was found. k Total
calculation time in minutes on a PII processor with 450 MHz and 512 MB RAM. l Number of generated and tested structures per minute.
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genetic algorithm. The exclusion of this fragment also
accelerates the optimization process. For tryptophan with 15
heavy atoms the determination of all possible structures is
essentially impossible within a practical period of time.
About 36 billion structures exist. The genetic algorithm
creates only about 20 000 structures out of this huge number
before the correct solution is found. Examples 4 and 5
demonstrate the power of the approach on molecules with
20 non-hydrogen atoms. While the first example has only
three double bonds, in the second case the number of double
bond equivalents is already nine. Due to this fact, the number
of possible structures is much larger, and the problem
requires a factor of 15 in computation time. However,
computers are becoming faster and time can also be saved
by computing parallel populations on parallel processors. A
high degree of automation is a significant advantage for the
method. By increasing the number of “intelligent” interven-
tions, even molecules with more non-hydrogen atoms might
become solvable. This is demonstrated in examples 5′, 6, 7,
and 8, where parts of the molecule are defined in advance.
In real application such information might be known from
the NMR spectrum (e.g., examples 5′ and 6), from the
synthesis, or even from the genetic algorithm itself. The letter
case is emphasized if one fragment is generated with a high
frequency in the process of the genetic algorithm, and the
∆(13C) values of the corresponding carbon atoms are low.
Such a fragments has a high probability of being part of the
solution structure. This fragment could then be defined as
fixed. Example 5′ differs from example 5 only by the fact
that two benzene fragments need to be part of the generated
constitutions. The dramatic acceleration of structure elucida-
tion by this small intervention demonstrates how the ap-
proach can assist the spectroscopists. All known structural
information can be introduced into the initial setup, and the
remaining constitutional space can be searched quickly and
effectively using the genetic algorithm. Similar essential
significant decreases in computational time are observed for
the other three example structures.

CONCLUSIONS

A general implementation of a genetic algorithm that uses
molecular constitutions as individuals is described. This
algorithm is able to optimize a molecular constitution
structure to fulfill experimentally observed properties. The
13C NMR spectrum of organic molecules can be accurately
determined by experiments and also rapidly predicted by
neural network calculation. Consequently the constitution of
organic molecules can be optimized relative to an unknown
organic sample by combining the genetic algorithm with the
neural network spectral prediction. An automated structure
elucidation is possible for molecules with up to 14 non-
hydrogen atoms. Molecular structures with up to 20 non-
hydrogen atoms can be determined using only their 13C NMR
chemical shifts by introducing a small list of forbidden
fragments. Larger molecular structures become solvable if
fragments that need to be in the molecule are known and
introduced as a good list. The number of overall possible
solution structures is drastically reduced by the inclusion of
such known fragments.
The maximal size of the solvable molecule is limited by

the size of the structural space accessible (time limit) or by

the accuracy of the property determination, either by experi-
ment or by calculation (accuracy limit). Since the 13C NMR
chemical shift prediction is the most time-consuming step
of the algorithm and is also responsible for the introduction
of the calculation error, it is the critical step for both limits.
With a fast and accurate chemical shift prediction by neural
networks the implementation of such a genetic algorithm
becomes possible for the first time.
The described procedures are combined in the program

“Genius”31 that should become a helpful tool for structure
elucidation of organic molecules.
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