
 
 

 

  

Abstract—Tools for the identification of trans-membrane 
spans from the protein sequence are widely used in the 
experimental community. Computational structural biology 
seeks to increase the prediction accuracy of such methods since 
they represent a first step towards membrane protein tertiary 
structure prediction from the amino acid sequence. We 
introduce a predictor that is able to identify trans-membrane 
spans from the sequence of a protein. The novelty of the 
approach presented here is the simultaneous prediction of 
trans-membrane spanning α-helices and β-strands within a 
single tool. An artificial neural network was trained on 
databases of 102 membrane proteins and 3499 soluble proteins. 
Prediction accuracies of up to 92% for soluble residues, 75% 
for residues in the interface, and 73% for TM residues are 
achieved. On average the algorithm predicts 79% of the 
residues correctly which is a substantial improvement from a 
previously published implementation which achieved 57% 
accuracy (Koehler et al., Proteins: Structure, Function, and 
Bioinformatics, 2008). The algorithm was applied to four 
membrane proteins to illustrate the applicability to both α-
helical bundles and β-barrels. 

I. INTRODUCTION 
EMBRANE proteins (MPs) account for about 30% of 
the proteins in the human genome and are involved in 

many essential functions in the cell. For instance, they act as 
transporters, participate in signaling pathways and function 
as ion-channels. Even though almost 50,000 protein 
structures are deposited in the ProteinDataBank (PDB), only 
about 900 belong to the class of MPs. This discrepancy 
reflects the difficulty of crystallizing MPs and they often 
exceed the size limitation for NMR spectroscopy. In 
contrast, the structures of MPs are arguably easier to predict 
computationally because of the constraints the membrane 
imposes on their fold [1].   

First attempts to identify membrane spanning regions 
along the sequence utilize hydrophobicity scales. A free 
energy value of transfer from a polar medium (the cytosol) to 
an apolar medium (the membrane) is assigned to each of the 
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20 amino acids. Depending on the preference of an amino 
acid for a specific environment the sign of this transfer free 
energy value changes. For the prediction of trans-membrane 
(TM) spans the transfer free energy values are added over a 
sequence window. 

There is a wealth of hydrophobicity scales available that 
were derived using experimental (for example Wimley & 
White [2, 3] or GES [4]), knowledge-based (UHS [5]), and 
consensus approaches (Kyte & Doolittle [6]). The scales are 
mostly derived considering two phases: solution (SOL) and 
membrane (TM). Only two scales [5, 7] include a third 
interface or transition region (TR). Potentials considering the 
depth of the residue in the membrane bilayer have also been 
reported for α-helical MPs [8, 9].  

The differences between various hydrophobicity scales 
can be explained by the different experimental setups used 
during their derivation. Wimley & White for instance 
examine unfolded peptides in solution and membrane bilayer 
[2, 7] whereas Hessa et al. consider folded proteins [8, 10].  

Hydrophobicity scales that include an interface region 
between solution and membrane are rare even though three-
state scales have a higher information content than two-state 
scales. In addition, three-state scales are able to provide 
information about the location of the polar headgroups of the 
membrane lipids, which are distinctly different than the 
soluble phase. Further, three-state scales can identify 
amphipathic helices located in the interface region. Wimley 
& White experimentally derived a hydrophobicity scale 
using penta-peptides that were unfolded in all three phases 
[2, 7]. For this reason the unsaturated hydrogen-bonds in the 
membrane bilayer lead to a bias of this scale towards 
solution. On average ~50% of the residues are correctly 
predicted in this three-state scenario. We derived a 
knowledge-based hydrophobicity scale from a database of 
known MP structures containing both α-helical and β-barrel 
proteins [5]. This Unified Hydrophobicity Scale (UHS) 
yields accuracies of ~57% in the three-state prediction 
scenario. Both scales were tested on a database containing 
both α-helical bundles and β-barrel proteins. A Mammalian 
Hydrophobicity Scale (MHS) was derived from 16 α-helical 
bundles and yields accuracies of ~61% tested on an only α-
helical database [5].  

Subsequent specialized prediction tools for TM spans use 
machine learning techniques such as Hidden Markov Models 
(HMMs), Artificial Neural Networks (ANNs), or Support 
Vector Machines (SVMs). According to Cuthbertson et al. 
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[11] Split4 [12], TMHMM2 [13], and HMMTOP2 [14, 15] 
are the most successful TM α-helix prediction tools 
available. Split4 [12] uses basic charge clusters and amino 
acid attributes to define the correct topology of the helices. 
TMHMM2 [13] is an HMM trained on a dataset of 160 both 
single- and multi-spanning proteins and has according to 
their developers 97% accuracy. HMMTOP [14] utilizes the 
evolutionary information of multiple-sequence alignments 
and is based on the notion that topology is governed by the 
difference of the amino acid distributions in different parts of 
the protein rather than the amino acid composition itself. The 
successor HMMTOP2 [15] incorporates experimental 
information into the topology prediction. Other methods 
include PhDhtm [16] (which uses two consecutive ANNs 
and multiple-sequence alignments), TMMOD [17] (which is 
based on TMHMM, but differs in training procedure and 
loop models), and TopCons [18] (a consensus prediction 
server combining five different predictors). 

The most successful methods for β-barrel proteins are 
according to Bagos et al. [19] HMM-B2TMR [20] and 
PROFtmb [21, 22], both HMM-based methods. HMM-
B2TMR is sequence-profile based and therefore uses 
multiple-sequence alignments. A dynamic programming 
algorithm is employed for optimization of the location of TM 
segments. PROFtmb is also profile-based and is trained on 
eight non-redundant β-barrels. Their developers state a four-
state accuracy of 86%. Bagos and co-workers tested the 
performance of various combinations of β-barrel predictors 
and implemented the best-performing consensus predictor as 
ConBBPRED. 

Objective of this work is to establish the first integrated 
tool that identifies both α-helical and β-strand TM spans in a 
single three-state prediction for the residue being either in 
TM, TR, or SOL region. Advantage of this method is that 
sequences can be screened for TM spans with a single tool. 
Furthermore, synergistic effects during the ANN training 
lead to an increased prediction accuracy.    

II. METHODS 

A. Creation of the databases of non-redundant protein 
structures 
For the MP database all TM chains from the PDBTM [23] 

were culled using the PISCES server [24, 25] with the 
following parameters: sequence identity <= 25%, resolution 
3Å, R-factor 0.3, sequence length 40-10,000 residues, non-
X-ray entries as well as Cα-only entries were included, and 
the PDB was culled by chains. Thereafter, structures derived 
from electron-microscopy data were excluded due to low 
resolution resulting in a database of 102 proteins with 136 
polypeptide chains. The PDB files were downloaded from 
the PDBTM.  

For the definition of the TM, TR, and SOL regions a fixed 
membrane thickness of 20Å (TM region) followed by a 10Å 
TR region was used. Furthermore, a 2.5Å gap region 

between the TM/TR regions as well as TR/SOL regions was 
introduced to more cleanly distinguish between the different 
environments (see ref. [5]). This procedure was implemented 
rather than using the membrane thickness given by the 
PDBTM (determined by the TMDET algorithm [26]) in 
order to avoid a recurrent influence of this predicted 
membrane thickness onto our method. The resulting database 
contained 28,379 residues in total, 9,510 residues being in 
the TM region, 9,079 classified as TR, and 9,790 classified 
as SOL. A total of 3,882 residues residing in the gap region 
were excluded from the training process to minimize noise 
due to incorrect assignment to regions.   

Even though the MP database contained a large fraction of 
soluble residues a soluble protein database was established 
to account for different properties of soluble proteins that are 
not equally represented by the soluble parts of the MPs (like 
solvent-accessible surface area, compactness, length of 
secondary structure elements).  

For the soluble protein database the entire PDB was culled 
with the PISCES server [24] using the same parameters as 
above with two exceptions. Due to the much larger size of 
the database a resolution limit of 2Å was used. Moreover, we 
excluded non-X-ray and Cα-only entries. The resulting 
database contained 3,499 proteins with a total of 3,623 
polypeptide chains and 820,485 residues. 

Both the MP as well as the soluble protein database were 
used as a basis for the input to the ANN.  

B. Knowledge-based free energies for secondary 
structure type and membrane location were used as input 
The MP database served as a basis for the derivation of 

knowledge-based free energies. The procedure is the same as 
described in [5] but updated databases allowed for more data 
to be included. Briefly, three-state free energies for the 
regions TM, TR, and SOL were derived by normalizing the 
amino acid frequencies in each region to 20. The 
propensities P [27] were then calculated by  
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and the free energies ΔG  were computed using 
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with R being the gas constant, and T=293K.  

The same procedure was applied to obtain the three-state 
free energies for the secondary structures helix, strand, and 
coil. The nine-state free energies for each combination of 
region and secondary structure type were calculated as in the 
three-state scenario but normalizing the amino acid 
occurrences to nine instead of three.  

We chose to include the free energies for the secondary 
structure types for the prediction of the TM region since the 
two phenomena are interrelated: when a nascent polypeptide 



 
 

 

chain in solution reaches the membrane interface the 
influence of the altered dielectric environment (as described 
by the free energies) leads to an increased formation of 
backbone hydrogen bonds and therefore to the formation of 
secondary structure. 

The obtained free energies for these different scenarios 
were taken as input parameters for the ANN. Furthermore, 
several amino acid properties such as the steric parameter, 
polarizability, volume, iso-electric point, the solvent-
accessible surface area [28], and the position-specific 
scoring matrices obtained from PSIBLAST [29] were used as 
input parameters as they increased prediction accuracy in 
previous experiments [28]. PSIBLAST was run with three 
iterations and an E-value cutoff of 0.001. 

C. Training procedure 
For each dataset (i.e. for each residue) the above 

mentioned input parameters were employed over a sequence 
window of 31 residues. Therefore (20 property descriptors + 
20 numbers in the PSIBLAST profile) x 31 residues = 1240 
inputs were used for each dataset. The MP database (28,379 
residues) served as a basis for the TM and TR region 
datasets, whereas the soluble protein database (820,485 
residues) together with the MP database were used for the 
SOL region datasets. To construct the input files the residues 
were randomly chosen from the databases. In addition, the 
residues were chosen as to equally represent TM, TR, and 
SOL residues using an over-sampling procedure. Three 
dataset sizes of 9,000, 90,000, and 450,000 datasets (i.e. 
residues) were used for training where the training was 
started on the smallest dataset and consecutively increased to 
larger dataset sizes.  

This balancing procedure was chosen to avoid an intrinsic 
bias of the method to predict one region over the other. It 
also maximizes the entropy in the training data and therefore 
the information content added by the ANN prediction. 

For the training procedure the datasets were shuffled and 
then split into three subsets: 80% were used for training, 
10% for monitoring the training progress, and 10% as an 
independent test set. Two ANNs were trained with 32 and 64 
nodes in the hidden layer, respectively. The ANN with 64 
nodes performed best in this case and the results are shown 
for this network.   

The ANN is a feed-forward network with bias neurons 
trained with back-propagation of errors. Other network 
architectures have not been tested. In initial training phases 
the resilient propagation algorithm [30] displayed 
accelerated training behavior, faster convergence and higher 
robustness with respect to the initial training parameters than 
simple propagation. Therefore, the ANN was trained using 
the resilient propagation algorithm whereas simple 
propagation was used for final optimization of the weights. 

D. Four examples illustrate the performance of the 
prediction tool 
The ANN prediction was applied to four MPs not 

included in the training phase: two α-helical bundles and two 
β-barrel proteins. The crystal-structures of the potassium 
channel KcsA (PDB ID 1k4c) elucidated by Rod McKinnon 
at a resolution of 2Å was chosen as first helical example 
protein. Furthermore, we chose lens aquaporin-0 (PDB ID 
2b6p) in the open state that was determined by Walz and co-
workers at 2.4Å. Unusual structural features in both proteins 
are half-helices with their adjacent loops returning to the 
extra-membrane region. As β-barrel proteins the Outer 
Membrane Protein W (OmpW – PDB ID 2f1t) crystallized 
by Tamm and van den Berg at 3Å and the NMR structure of 
OmpA (PDB ID 2ge4) determined by Tamm and Bushweller 
were selected.  

III. RESULTS AND DISCUSSION 
Most of the TM prediction methods are specialized 

methods for α-helical proteins. β-strand TM spans, on the 
other hand, are much more difficult to predict because a 
simple averaging procedure is less effective when 
consecutive side-chains alternate in facing the polar interior 
and the apolar exterior of the barrel (see Fig. 1). This 
obstacle can be overcome using machine learning techniques 
such as ANNs, HMMs, or SVMs that are capable of 
recognizing such alternating patterns while distinguishing 
between α-helices and β-strands at the same time. In 
addition, α-helices require ~19 residues to cross the lipid 
bilayer while β-strands require only ~9 residues. This 
difference results in a different optimal sequence window 
size for simple linear averaging strategies. However, non-
linear functions like ANNs can be optimized on a single 
larger window (here 31 residues) to work equally well for 
both scenarios.  

 
Fig. 1.  This figure illustrates the reason for the failure of a simple 
averaging procedure of hydrophobicity values for the prediction of β-
barrel MPs. The arrow indicates a β-strand with its consecutive side-
chains (Cα and Cβ atoms indicated as circles) pointing in opposite 
directions. Averaging over these positive and negative contributions 
yields a negligible transfer free energy value resulting in a very small 
probability of predicting this stretch as a TM span. 
 



 
 

 

A. Resilient propagation accelerates training 
The ANN is implemented within the Bio-Chemical-

Library developed in the Meiler laboratory 
(www.meilerlab.org) and written in the C++ programming 
language. It serves as a framework for a wide variety of 
biomedical applications, such as de novo protein tertiary 
structure prediction [31, 32] and virtual high-throughput 
screening. The training was started with a small dataset 
(9,000 datasets). Subsequently the number of datasets was 
increased to 90,000 and 450,000 datasets. The ANN was 
trained on each dataset using the resilient propagation 
algorithm until the error of the monitoring dataset was 
minimized (see Fig. 2). Afterwards the ANN was trained in 
simple propagation mode for several 100 iterations to reach 
the RMSD minimum. This procedure became necessary as 
resilient propagation is known to display unstable 
minimization behavior close to minima in the target function 
[30].  

B. Trans-membrane free energies are important for 
training 
Fig. 3a) shows the sum of the input sensitivities plotted 

over the 31 residues in the sequence window used for input. 
The input sensitivity is defined as a partial derivative of an 
output value with respect to an input variable. The values are 
determined numerically after ANN training is completed. As 
expected, the center of the sequence window has the highest 
impact as reflected in the increased input sensitivities. This 
represents the importance of the pattern immediately 
adjacent to the residue of interest within an α-helix or β-
strand. The sensitivities converge to a smaller constant value 
towards the edges of the window which reflects the 
significance of long-range interactions within the protein. 

Such interactions are attributed to backbone hydrogen-bonds 
that stabilize β-barrel proteins as well as helix-helix contacts 
in α-helical bundles. The large window size facilitates 
capturing part of this effect. The optimal window size was 
determined by testing window sizes of 15, 23, 31, 39, and 47 
residues with 31 residues performing best.  

Fig. 3b) shows the sum of the input sensitivities for the 
individual input properties. The highest sensitivity is 
observed for the PSIBLAST position-specific scoring matrices 
with a sensitivity of 2.0. The profile reflects evolutionary 
information of the protein sequence which is important for 
the distinction between α-helical bundles and β-barrel 
proteins. Furthermore, it is essential for the identification of 
TM spans because the likelihood for mutations contained in 
this profile provides information about the exposure to the 
polar solvent, membrane bilayer, or protein core.  

Considerable influence have the free energies for the TM 
region, both in the three-state scenario (sensitivities TM = 
1.2, TR = 0.6, SOL = 0.8) and in the nine-state scenario in 
conjunction with secondary structure types (see below). 
When considering secondary structure types the free energy 
for helices (sensitivity = 0.8) contains more information than 
for strands (0.7). Both have a higher weight than the free 

energy for coil residues (0.5). Similarly, if the free energies 
for the secondary structure types are summed over TM, TR, 
and SOL regions, strands contain with 3.0 more information 
than helices with 2.8. 

 
 
Fig. 2.  The RMSD is plotted over the number of steps during the 
training procedure. Black indicates the RMSD of the training dataset, 
light gray for the monitoring dataset, and dark gray for the independent 
test set. The 'jumps' at 9,890 and 17,110 steps indicate a switch to a 
larger dataset (started with 9,000, then continued with 90,000, and 
450,000 datasets). The flat line represents training using the simple 
propagation algorithm. 
  

Fig. 3.  In a) the sum of the weights are plotted over the residues in the 
sequence window. As expected, the weights for the center of the window 
are the largest, therefore having the most impact on the prediction. 
Residues at the edges of the window have less importance, although they 
might be involved in long-range hydrogen bonds for the prediction in β-
barrels. Figure b) shows the sum of the weights versus the amino acid 
properties used as input for the ANN: steric = steric parameter; polari = 
polarizability; iso = isoelectric point; sasa = solvent accessible surface 
area; fe = free energy for the following secondary structure types and 
regions: h = helix; s = strand; c = coil; tm = trans-membrane; tr = 
transition region; sol = solution; blast = blast profile: the sum of the 
weights is normalized by 20 to represent the weight for a single amino 
acid.  



 
 

 

 
 
Fig. 4.  The algorithm was applied to the sequence of four proteins and mapped onto the known protein 
structures. a) KcsA potassium channel (PDBID 1k4c); b) lens aquaporin-0 (PDBID 2b6p); c) Outer membrane 
protein W (PDBID 2f1t); d) Outer membrane protein A (PDBID 2ge4). Red indicates a prediction for being in 
TM, white represents a prediction for TR, and blue indicates a prediction for SOL. The membrane location is 
indicated by the black lines. The arrow in the close-up of panel a) points to the pore helix of the tetrameric 
channel which is a half-helix with the adjacent loop (representing the selectivity filter) returning to the extra-
cellular side. 

The sensitivities for the free energies of the TM region in 
the 9-state scenario sum up to 3.6, whereas for the TR and 

SOL these sums are smaller (2.3 and 2.0, respectively). The 
sum of the six amino acid properties (excluding the 
PSIBLAST matrices) is 3.4 reflecting a smaller per property 
influence when compared to 
the free energy values. It is 
known, that the environment 
of residues plays a critical role 
in the formation of secondary 
structure. We therefore 
speculate that the ANN uses 
the free energy patterns 
efficiently for the 
identification of TM spans.  

C. Per-residue accuracy is 
highest for soluble region 
We have shown previously 

[5] that the per-residue 
accuracy of the Wimley-White 
hydrophobicity scale is ~50% 
for the three-state prediction 
scenario using a simple 
averaging strategy. The UHS 
correctly classifies up to 57% 
of the residues. However, it 
was also shown, that this 
averaging procedure is much 
less effective when identifying 
TM β-strands in β-barrel 
proteins due to the alternating 
hydrophobicities of 
consecutive amino acids. 
Furthermore, such a simple 
scheme is not able to 

incorporate different window lengths for helices and strands, 
as discussed above.  

Table I shows the percentage of per-residue predictions for 
the three regions TM, TR, and SOL using the ANN method. 
The data is shown for both the independent and the training 
dataset. The diagonal matrix elements indicate correct 
predictions whereas off-diagonal elements represent false 
classifications. The agreement for the SOL is broken down 
into the accuracy for soluble proteins and MPs. It can be 
seen that the highest agreement is achieved in SOL for 
soluble proteins where 92% of the residues  in the 
independent dataset and 91% of the residues in the training 
dataset are correctly predicted. For MPs the percentage 
agreement is lower with 75% for the independent and 81% 
for the training dataset. The interface region has an 
agreement of 75% and 77% correct predictions, respectively. 
This is expected since the interface region has two adjacent 
regions that detract correct predictions. In addition, the usage 
of a fixed membrane thickness will reduce prediction 
accuracy in this region [1]. The TM region has an agreement 
of 73%. Therefore, the prediction accuracies for MPs are 
similar for all of the three regions. The smaller agreement in 
the SOL for soluble parts of MPs than for soluble proteins 
has been observed earlier [5] and can be attributed to the 
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sol (SOL proteins) 91.4 6.2 2.4 
sol (MPs) 80.5 14.0 5.5 

tr 15.5 76.8 7.8 
tm 4.2 19.4 76.5 

Accuracies of the prediction method on the independent and 
training datasets with the percentage of predicted residues in these 
regions. The percentage of correctly predicted residues is 79.6% for 
the independent and 81.3% for the training dataset. sol = solution, tr = 
transition region, tm = trans-membrane. 

 



 
 

 

difficulty of accurately pinpointing the exact beginnings and 
ends of the TM spans. In other words, the residues on the 
membrane surface are more often predicted as TM although 
they belong to the SOL region. Such residues are absent in 
soluble proteins resulting in a better performance.  

D. Four examples illustrate a successful prediction 
The algorithm was tested on four examples: two α-helical 

proteins and two β-barrel proteins. Only the sequence of the 
proteins was used as input and the prediction was mapped 
onto the known protein structures as shown in Fig. 4.  

Panel a) shows the crystal structure of the potassium 
channel KcsA (PDB ID 1k4c). The figure shows the correct 
prediction of the membrane location. The structure contains 
a half-helix (selectivity filter) with the adjacent loop 
returning to the extra-cellular side of the channel (see close-
up). Since the correct prediction of such half-helices 
represents a particular challenge to the algorithm this 
indicates the ANNs ability to identify the correct location of 
these pore helices. For this example the ANN predicts 83% 
of the residues correctly. 95% of the TR residues and 90% of 
the TM residues are correctly identified. The unified 
hydrophobicity scale in conjunction with the simple window 
function implemented earlier [5] identifies 68% of the 
residues correctly with an accuracy of 21% for SOL, 55% for 
TR, and 90% for TM.  

The prediction for the crystal structure of lens aquaporin-0 
in the open state (PDB ID 2b6p) is shown in panel b). Again, 
all of the three regions are correctly identified. Overall, 75% 
of the residues are correctly classified. The accuracy is 93% 
for SOL, 81% for TR, and 68% for TM. The lower 
agreement in TM is due to the fact that there are isolated 
residues in the membrane that are predicted to be in SOL. 
One of the two half-helices is correctly predicted to be in the 
membrane (as seen by the upper arrow in the inset). The 
half-helices dip into the membrane and the adjacent loops 
return to the extra-membrane region. This represents a 
particular challenge for prediction algorithms since TM 
helices are usually much longer (~19 residues) and can be 
confused with hydrophobic regions in soluble proteins. This 
difficulty might be addressed by feeding the output of this 
prediction algorithm into a second ANN to obtain the final 
output. Such a procedure was applied in PSIPRED, one of the 
best secondary structure prediction algorithms to date [33].  

Panel c) shows the structure of the Outer Membrane 
Protein W (OmpW – PDB ID 2f1t). The algorithm is able to 
correctly identify the location of TM strands. Overall, 73% 
of the residues are correctly identified with an accuracy of 
100% for the TR, and 86% for the TM. The soluble region is 
not predicted as such since 71% of these residues are 
predicted to be in TR and 29% in the TM. This is indicated 
by the small helix at the bottom (see arrow) which is 
predicted to be in TM although it resides in SOL. For 
comparison, the unified hydrophobicity scale in conjunction 
with the simple window function implemented earlier [5] 

identifies 43% of the residues correctly with an accuracy of 
29% for SOL, 75% for TR, and 27% for TM.  

Panel d) shows the Outer Membrane Protein A (OmpA – 
PDB ID 2ge4). Also this example suggests that the algorithm 
is able to distinguish the different regions for β-barrel 
proteins. In this protein the overall prediction accuracy 
averages to 81%. 97% of the TR residues are correctly 
identified and 77% of the TM residues are correctly 
predicted. The algorithm identifies all of the 12 soluble 
residues as being in TR. However, they constitute only ~7% 
of the total residues in this small β-barrel.   

IV. CONCLUSION 
An artificial neural network was trained to predict the 

location of trans-membrane spans from the protein sequence. 
In contrast to earlier prediction tools which are specialized 
for either α-helical or β-barrel proteins, the method 
represents the first tool that predicts trans-membrane spans 
for both classes of proteins. 

The artificial neural network was trained on a membrane 
protein and soluble protein database. As input served several 
amino acid properties and the position-specific scoring 
matrices from PSIBLAST. Furthermore, we used the free 
energies for (1) the three-state scenario of the residue being 
in helix, strand, and coil, (2) the three-state scenario of the 
residue being in trans-membrane, transition, and soluble 
region, and (3) the nine-state scenario with pair-wise 
combinations of the former. We found that the position-
specific scoring matrices and the free energies for the trans-
membrane region (both for individual secondary structure 
types as well as combined) had the highest impact on the 
prediction. In contrast, other amino acid properties were less 
important for the prediction.  

Soluble residues were correctly predicted in 92% of the 
cases, for interface residues the accuracy was 75%, and for 
trans-membrane residues 73%. Therefore, in the three-state 
scenario, on average 79% of the residues are correctly 
predicted, which is a remarkable improvement compared to 
the prediction using simple hydrophobicity scales.  

The algorithm was applied to four membrane proteins, two 
of α-helical nature and two β-barrel proteins. In these 
examples the prediction tool is able to classify 78% of the 
residues correctly. Even though half-helices are intrinsically 
difficult to predict, the predictor correctly identified two of 
three half-helices as trans-membrane spans. Since the tested 
proteins lack large soluble domains, the network has 
difficulties to identify short soluble loops and correctly 
classifies them only for one of the four examples.  
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