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a b s t r a c t

Recent development of high-resolution mass spectrometry (MS) instruments enables chemical crosslink-
ing (XL) to become a high-throughput method for obtaining structural information about proteins.
Restraints derived from XL-MS experiments have been used successfully for structure refinement and pro-
tein–protein docking. However, one formidable question is under which circumstances XL-MS data might
be sufficient to determine a protein’s tertiary structure de novo? Answering this question will not only
include understanding the impact of XL-MS data on sampling and scoring within a de novo protein struc-
ture prediction algorithm, it must also determine an optimal crosslinker type and length for protein struc-
ture determination. While a longer crosslinker will yield more restraints, the value of each restraint for
protein structure prediction decreases as the restraint is consistent with a larger conformational space.

In this study, the number of crosslinks and their discriminative power was systematically analyzed in
silico on a set of 2055 non-redundant protein folds considering Lys–Lys, Lys–Asp, Lys–Glu, Cys–Cys, and
Arg–Arg reactive crosslinkers between 1 and 60 Å. Depending on the protein size a heuristic was devel-
oped that determines the optimal crosslinker length. Next, simulated restraints of variable length were
used to de novo predict the tertiary structure of fifteen proteins using the BCL::Fold algorithm. The results
demonstrate that a distinct crosslinker length exists for which information content for de novo protein
structure prediction is maximized. The sampling accuracy improves on average by 1.0 Å and up to 2.2 Å
in the most prominent example. XL-MS restraints enable consistently an improved selection of
native-like models with an average enrichment of 2.1.

! 2015 Published by Elsevier Inc.

1. Introduction

‘Structural Genomics’ – the determination of the structure of all
human proteins – would have profound impact on biochemical and
biomedical research with direct implication to functional annota-
tion, interpretation of mutations, development of small molecule
binders, enzyme design or prediction of protein/protein interaction
[1]. While significant progress towards this goal has been made
through X-ray crystallography and nuclear magnetic resonance
spectroscopy (NMR), tertiary structure determination continues

to be a challenge for many important human proteins. At present,
high resolution structures exist for about 5% of all human proteins
in the protein data bank (PDB) [2]. For many uncharacterized
human proteins, construction of a comparative model is possible
starting from the experimentally determined structure of a related
protein. Nevertheless, for about 60% (!7800) of known protein
families in the Pfam database [3] not a single structure is deposited
[4]. Many of these proteins will continue to evade high-resolution
protein structure determination.

Accordingly, researchers strive to develop alternative
approaches. The most extreme approach includes computational
methods that predict the tertiary structure of proteins from their
sequence alone. While computational methods are sometimes suc-
cessful at the predicting the tertiary structure of small proteins
with up to one hundred residues [5], for larger proteins the size
of the conformational space to be searched as well as the discrim-
ination of incorrectly folded models hinder structure prediction
[6–8].
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However, recent studies demonstrate that combining de novo
protein structure prediction with limited experimental data [9–
13], i.e. experimental data that alone is insufficient to unambigu-
ously determine the fold of the protein, can yield accurate models
for larger proteins. The structural restraints in those studies were
acquired using electron paramagnetic resonance (EPR) spec-
troscopy [9,14], cryo-Electron Microscopy (cryo-EM) [13,15], or
NMR spectroscopy [12].

As an alternative technique, chemical crosslinking (XL) in com-
bination with mass spectrometry (MS) can be applied to obtain
distance restraints, which can be used to guide protein structure
prediction (for review see [16–19]). Using bifunctional reagents
with a defined length, functional groups within the protein can
be covalently bridged in a native-like environment. Thus, it is pos-
sible to determine an upper limit for the distance between those
residues after enzymatic proteolysis and identification of cross-
linked peptides.

This method allows for a fast analysis of protein structures in a
native-like environment at a low concentration and can even be
applied to high molecular weight proteins [20], membrane pro-
teins [21], or highly flexible proteins [22]. If combined with affinity
purification it becomes possible to study proteins inside the cell
[23]. Currently, the XL-MS technology is rapidly gaining impor-
tance driven by the liquid chromatography–mass spectrometry
(LC–MS) instrument development, the generation of advanced
analysis software [24], and the direct integration in protein struc-
ture prediction workflows [25–27]. Furthermore, hundreds of dif-
ferent crosslinking reagents with different spacer lengths,
reactivities, and features for specific enrichment and improved
detectability are now commercially available [28].

However, whereas the potential to combine XL-MS and compu-
tational modeling has been frequently demonstrated and many
technical problems of XL-MS have been solved, several central
questions have not yet been evaluated systematically.

(i) Crosslinking reagents are available with a spacer length
ranging from 0 Å to more than 35 Å. Whereas longer
reagents are likely to provide more distance restraints,
shorter crosslinks have higher information content in de
novo structure prediction as the conformational search space
is more restricted. Thus, the question arises, which crosslin-
ker spacer length supports structure prediction best?

(ii) Crosslinking results are often used to confirm already exist-
ing structures. However, what is the average gain in model
accuracy and selection of correct models when using
crosslinking data in conjunction with de novo protein struc-
ture prediction?

(iii) Crosslinking reagents vary in reactivity towards different
functional groups present in different amino acids. For de
novo protein structure prediction, which is the gain of using
additionally crosslinker with different reactivities?

In this study, we simulated crosslinking experiments on more
than 2000 non-redundant protein structures to determine the
number of possible and structurally relevant crosslinks depending
on the size of the protein as well as on the length and reactivity of
the applied crosslinking reagents. We then tested the impact of
crosslinking restraints on de novo protein structure prediction for
fifteen selected proteins.

2. Experimental procedures

2.1. Software and databases

A subset of the PDB containing 2055 non-redundant protein
structures was downloaded from the PISCES server (version

08.2012) [29]. This PDB subset was created by filtering all available
structures with a resolution of at least 1.6 Å, a maximum sequence
identity of 20% and an R-factor cutoff of 0.25. Euclidean distances
and shortest solvent accessible surface (SAS) path lengths between
Cb–Cb, Lys-Nz–Lys-Nz, Lys-Nz–Asp-Cc, and Lys-Nz–Glu-Cd, as well
as Arg-NH2–Arg-NH2 and Cys-SG–Cys-SG atom pairs with a maximal
intramolecular distance of 60 Å were determined through the com-
mand line version of Xwalk [30].

2.2. Generation of sequence dependent distance functions

Tables containing the Euclidian distances and the sequence sep-
aration between crosslinking target amino acids ((i) Lys–Lys, (ii)
Lys–Asp, (iii) Lys–Glu, (iv) Arg–Arg, and (v) Cys–Cys) were gener-
ated. Amino acid pair distances were sorted into 2.5 Å bins. The
total number of observed pairs for each sequence and Euclidean
distance was counted. Based on the result an approximation of
the distance distribution for every sequence distance was created.
The median of the distribution was determined. A logarithmic
function was calculated as a regression curve in the form
Emed ¼ a # lnðSÞ þ b to correlate sequence separation S to the med-
ian Euclidean distances Emed.

2.3. Calculation of the amino acid side chain length

Based on the structure of calmodulin (PDB entry 2ksz) the aver-
age Cb–Nz, Cb–Cc, Cb–Cd, Cb–NH2, and Cb–SG distances of the side-
chains of lysine, aspartic, glutamic acid, arginine, and cysteine
were determined to be 4.5 Å, 2.3 Å, 3.6 Å, 5.1 Å, and 1.8 Å,
respectively.

2.4. Distinguishing impossible, possible and structurally valuable
crosslinks

Crosslinker spacer lengths between 1 and 60 Å distances were
evaluated and classified in either (i) impossible crosslinks, mean-
ing that the distance between the Cb-atoms of the crosslinked
amino acids exceeds the sum of the spacer lengths and the side
chain lengths, or (ii) possible crosslinks, meaning that the Cb–Cb
distance is below the sum of the spacer lengths and side chain
lengths. The latter group was subdivided into crosslinks potentially
useful for structure determination (valuable XL) and those that are
unlikely to contribute much information (non-valuable XL). We
defined crosslinks as valuable if the spacer length is shorter than
the median distance expected for the given sequence separation
by the equations derived in Section 2.2 (Fig. 2B, C and D). For these
calculations, all proteins were grouped into 2.5 kDa bins. The cal-
culations were performed for crosslinker lengths from 1 to 60 Å
with a step size of 1 Å.

2.5. Estimation of optimal spacer lengths for a given protein molecular
weight

Over all proteins in each molecular weight (MW) bin, the total
number of possible distance pairs (#possible cross links) as well
as the number of distance pairs useful for structure determination
(#valuable cross links) were computed for each crosslinker spacer
length. Furthermore, the maximum number of valuable crosslinks
observed for all spacer length ð#valuablemaxÞ was determined. For
each MW bin the ratios (#valuable cross links

#possible cross links) and (#valuable cross links
#valuablemax

) were
plotted as a function of the crosslinker spacer length. The optimal
crosslinker length for each MW bin was approximated as intersec-
tion points of the two functions using a local regression (see Fig. 4).
The estimated values for the optimal crosslinker spacer length
were plotted as a function of the MW and were fitted using a cubic

80 T. Hofmann et al. / Methods 89 (2015) 79–90



regression curve. The script used for the calculation is available at
http://www.ufz.de/index.php?en=19910.

2.6. Simulation of crosslinking restraints

Seventeen proteins with known tertiary structure determined
via X-ray crystallography (resolution of <1.9 Å) were selected from
the dataset of structures as test cases to evaluate the influence of
crosslinking restraints on de novo protein structure prediction. To
thoroughly benchmark the algorithm, the benchmark set covers a
wide range of protein topologies and structural features. The
sequence lengths of the proteins range from 105 to 303 residues,
the number of secondary structure elements ranges from 5 to 19
with varying a-helical and b-strand content (Table 1). For these
proteins, all solvent accessible surface Cb–Cb distances between
target amino acids in the structure which were within the range
of either homobifunctional Lys-reactive crosslinkers or heterobi-
functional Lys–Asp/Glu reactive crosslinkers were determined
through Xwalk. For the predicted optimal crosslinker length (read
above) and spacer lengths of 2.5, 7.5, 17.5, and 30 Å lists of struc-
turally possible crosslinks were generated.

For the two proteins horse heart cytochrome c (PDB entry 1hrc)
and oxymyoglobin (PDB entry 1mbo) restraints were also derived
from published crosslinking MS experiments deposited in the XL
database [25]. Experimental crosslinking data of FGF2 (PDB entry
1fga) and p11 (PDB entry 4hre) were derived from Young et al.
[19] and Schulz et al. [31], respectively.

2.7. Translating crosslinking data into structural restraints

Explicitly rebuilding coordinates for a crosslink is comparable
to solving the loop closure problem [32]. During de novo, protein
structure prediction the crosslink would have to be reconstructed
each time the conformation of the protein changes. In a typical
Monte Carlo simulation with a maximum of 12000 Monte Carlo
steps per model and 5000 models for each protein this would
result in a maximum number of 60 million attempts to build the
crosslink, which is too resource demanding for usage in de novo
protein structure prediction. Therefore, we developed a fast
approach to estimate the chance that a particular model fulfills a
XL-MS restraint. The surface path of a crosslink is approximated
by laying a sphere around the protein structure and computing
the arc length between the crosslinked residues (Supplementary
Fig. S3). The geometrical center of the protein structure is used
as the center of the sphere. If takeoff and landing point have differ-
ent distances to the center of the sphere, the longer distance is
used as the radius. During the protein structure prediction process,
the side-chains of the residues are not modeled explicitly but rep-
resented on a simplified way through a super atom. While this sim-
plification vastly reduces the computational demand of the
algorithm, it also adds additional uncertainty due to the unknown
side-chain conformations. The agreement of the model with the
crosslinking data is quantified by comparing the distance between
the crosslinker lengths (lXS + lSS1 + lSS2) with the computed arc
lengths (darc), with '1 being the best agreement and 0 being the
worst agreement. To account for the uncertainty of side-chain con-
formations a cosine-transition region of 7 Å was introduced
(Supplementary Fig. S3).

2.8. Structure prediction protocol for the benchmark set

The protein structure prediction protocol is based on the
BCL::Fold protocol for soluble proteins [33]. In a preparatory step,
the secondary structure elements (SSEs) are predicted using the
SSE prediction methods PsiPred [34] and Jufo9D [35]
(Supplementary method S1) and an SSE pool is created

(Supplementary method S2). Subsequently a Monte Carlo
Metropolis energy minimization algorithm draws random SSEs
from the predicted SSE pool and places them in the
three-dimensional space. Random transformations like translation,
rotation or shuffling of SSEs are applied. After each Monte Carlo
step the energy of the resulting model is evaluated using
knowledge-based potentials which, among others, evaluate the
packing of SSEs, exposure of residues, radius of gyration, pairwise
amino acid interactions, loop closure geometry and amino acid
clashes [36] (Supplementary method S3). Based on the energy dif-
ference to the previous step and the simulated temperature a
Metropolis criterion decides whether to accept or reject the most
recent change.

The protein structure prediction protocol is broken into multi-
ple stages, which differ regarding the granularity of the transfor-
mations applied, and the emphasis of different scoring terms. The
first five stages apply large structural perturbations, which can
alter the topology of the protein. Each of the five stages lasts for
a maximum of 2000 Monte Carlo steps. If an energetically
improved structure has not been generated within the previous
400 Monte Carlo steps, the stage terminates. Over the course of
the five assembly stages, the weight of clashing penalties in the
total score is ramped up as 0, 125, 250, 375, and 500.

The five protein assembly stages are followed by a stage of
structural refinement. This stage lasts for a maximum number of
2000 Monte Carlo steps and terminates if no energetically
improved model is sampled for 400 Monte Carlo steps in a row.
Unlike the assembly stages, the refinement stage only consists of
small structural perturbations, which will not drastically alter the
topology of the protein model.

Through multiple prediction runs with different score weights,
the optimal contribution of the crosslinking score to the total score
was determined to be 40–50%. Consequently, the weight for the
scoring term evaluating the agreement of the model with the
crosslinking data was set to 300 over all six stages, which ensures
that the crosslinking score contributes between 40% and 50% to the
total score.

2.9. De novo folding simulations without and with crosslinking
restraints

To evaluate the influence of crosslinking restraints on protein
structure prediction accuracy, each protein was folded in the
absence and in the presence of Lys–Lys, Lys–Glu, and Lys–Asp
crosslinking restraints. Independent structure prediction experi-
ments were performed for the predicted optimal as well as two
shorter and two longer crosslinker spacer lengths each of the five
spacer lengths (Table 2). Additionally, predictions were performed
using combination of all spacer lengths as well as using restraints
obtained by the optimal spacer length of all three crosslinker reac-
tivities. For the two proteins of which experimentally determined
crosslinking data were available, protein structure prediction was
additionally performed for the experimentally determined
restraints. For each protein and crosslinker length used, 5000 mod-
els were sampled in independent Monte Carlo Metropolis trajecto-
ries. Due to the randomness of the employed Monte Carlo
algorithm, ten sets of 5000 models were sampled for each protein
without restraints. Improvements in prediction accuracy can be
compared to the standard deviations to identify statistically signif-
icant improvements (Table 3).

2.10. Metrics for comparing calculating model accuracy and
enrichment

The results were evaluated using the RMSD100 [37] and enrich-
ment [36] metrics. The RMSD100 metric was used to quantify the
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sampling accuracy by computing the normalized root-mean square
distance between the backbone atoms of the superimposed model
and native structure. The enrichment metric was used to quantify
the discrimination power of the scoring function by computing
which percentage of the most accurate models can be selected
by the scoring function. The enrichment metric is used to assess
the influence of the crosslinking restraints to discriminate among
the sampled models. First, the models of a given set S are sorted
by their RMSD100 relative to the native structure. The 10% of the
models in S with the lowest RMSD100 are assigned to subset P
(positives) and the remaining 90% of the models are assigned to
subset N (negatives). Second, the models in S are sorted by their
BCL score. The 10% of the models in S with the best score are
assigned to subset FS (favorable score). The intersection
TP ¼ FS \ P contains the most accurate models which the scoring
function can select (true positives). The enrichment ¼ #TP

#P (
#Pþ#N

#P ,
with # denoting the size of the given sets, measures which ratio
of the most accurate models the scoring function can select. In
order to reduce the influence of the sampling accuracy on the
enrichment values, the positive models are considered the 10% of
the models with the lowest RMSD100 and #Pþ#N

#P is fixed at a value
of 10.0. Therefore, the enrichment ranges from 0.0 to 10.0, with a
score of 1.0 indicating random selection and a value above 1.0 indi-
cating that the scoring function enriches for native-like models.

3. Results

3.1. Creation of an in silico crosslinking database

We performed in silico crosslinking experiments on 2055
non-redundant proteins. Covering a MW range from 1.4 to
139 kDa, 59% of the proteins have a MW below 25 kDa
(Supplementary Fig. S1). For each of those proteins all Lys–Lys,
Lys–Asp, and Lys–Glu sequence and Euclidean distances as well
as the solvent accessible surface (SAS) distance between the
Cb-atoms were determined. Thus, the resulting database contained
information on 391,902 Lys–Lys, 395,815 Lys–Glu, and 360,101
Lys–Asp pairs which built the basis for the determination of the
number of possible crosslinks, crosslinks useful for structure pre-
diction, and finally for the prediction of the optimal crosslinker
length for studying a selected protein (Fig. 1A).

3.2. Estimation of the possible crosslinks per protein

Next we estimated how many and which of the distances could
be crosslinked with a crosslinker of a given length and specificity.
We considered crosslinks possible if the sum of the spacer length
and the length of the two connected sidechains (Cb–Cb-, Lys-Nz–
Lys-Nz, Lys-Nz–Asp-Cc or Lys-Nz–Glu-Cd) is longer than the Cb–

Table 1
Chosen Proteins for modeling benchmark test. The fifteen proteins for the benchmark set were selected from high-resolution structures deposited in the Protein Data Bank. The
structures were selected to cover a wide range of the structural feastures sequence length (#res), percentage of residues within SSEs (%resSSE), number of SSEs (#SSEs), number of
a-helices (#a) and number of b-strands (#b) while having a mutual sequence identity of less than 20%.

Structure Uniprot Resolution [Å] Molecular weight [Da] Sequence length [aa] Lys portion [%] a-helix [%] b-sheet [%]

1hrc P00004 1.9 12368 105 18 40 1
3iv4 Q7A6S3 1.5 13235 112 6 49 25
1bgf P42228 1.45 14504 124 5 79 1
1t3y Q14019 1.15 15835 141 9 35 29
3m1x C4LXT9 1.2 15882 138 7 25 28
1x91 Q9LNF2 1.5 16419 153 7 76 0
1jl1 P0A7Y4 1.3 17483 155 7 34 30
1mbo P02185 1.6 17980 153 12 77 0
2qnl Q11XA0 1.5 19218 162 5 70 2
2ap3 Q8NX77 1.6 23190 199 23 81 0
1j77 Q9RGD9 1.5 24226 209 8 62 1
1es9 Q29460 1.3 25876 232 3 41 11
3b5o D0VWS1 1.35 27506 244 3 71 0
1qx0 P0A2Y6 2.26 32821 293 7 38 20
2ixm Q15257 1.5 34798 303 7 60 3
fgf2 P09038 1.5 17859 145 10 9 34
P11 P60903 2.0 11071 95 13 63 3

Table 2
Crosslinks obtained for the benchmark proteins. Simulated and experimentally determined crosslinks were obtained for the fifteen benchmark proteins. For each protein, an
optimal spacer length was determined (optimal). Additional crosslinks were simulated for two shorter (short1 and short2) and two longer (long1 and long2) spacer. The number
of yielded crosslinks (#rest) is shown for each spacer length.

Protein Optimal Short1 Short2 Long1 Long2

Length #rest Length #rest Length #rest Length #rest Length #rest

1hrc 10.2 13 2.5 0 7.5 7 17.5 27 30 107
3iv4 10.4 5 2.5 2 7.5 2 17.5 7 30 13
1bgf 10.7 6 2.5 3 7.5 4 17.5 10 30 13
1t3y 10.9 35 2.5 9 7.5 20 17.5 42 30 63
3m1x 10.9 1 2.5 0 7.5 0 17.5 5 30 19
1x91 11 2 2.5 0 7.5 1 17.5 8 30 27
1jl1 11.2 7 2.5 0 7.5 3 17.5 11 30 24
1mbo 11.3 9 2.5 0 7.5 3 17.5 23 30 77
2qnl 11.5 6 2.5 4 7.5 4 17.5 8 30 15
2ap3 12.1 53 2.5 0 7.5 19 17.5 136 30 427
1j77 12.2 29 2.5 7 7.5 16 17.5 36 30 70
1es9 12.5 8 7.5 0 17.5 1 37.5 17 45 20
3b5o 12.7 15 7.5 2 17.5 8 37.5 21 45 25
1xq0 13.3 9 7.5 0 17.5 4 37.5 14 45 44
2ixm 13.5 41 7.5 20 17.5 41 37.5 49 45 57
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Cb-SAS-distance between the amino acids. As the lengths of the
sidechains of Lys (Cb-Nz), Asp (Cb-Oz), and Glu (Cb-Oz) 4.5 Å,
2.4 Å, and 3.6 Å were used which were determined as average val-
ues from the crystal structure of Calmodulin (PDB entry 1cll). In sil-
ico crosslinking experiments were conducted for all of the 2055
proteins using homobifunctional Lys–Lys-reactive, as well as
heterobifunctional (Lys–Asp- and Lys–Glu-reactive) crosslinking
reagents with lengths from 1 to 60 Å (step size 1 Å).

To draw conclusions from the correlation of this in silico
crosslinking experiments to the MW of the studied proteins the pro-
teins were grouped into 45 bins with a step size of 2.5 kDa. For
example, a protein with a MW in the range of 25–27.5 kDa contains
on average 15.1 Lys, 14.4 Asp, and 16.7 Glu. On average 182 Lys–Lys,
173 Lys–Glu, and 144 Lys–Asp crosslinks exist per protein within
this specific MW bin. Theoretically, all of those could be crosslinked
with a crosslinker of 60 Å. In contrast by utilization of crosslinkers of
13 Å (as e.g. BS3) only about 33% of the crosslinks are formed in sil-
ico. When going to a crosslinker of length of 1 Å (e.g. close to EDC),
only 10% of all possible amino acid pairs are linked.

3.3. Estimation of structurally relevant crosslinks

In protein structure prediction approaches, the enrichment of
low RMSD structures among thousands of generated models is cru-
cial. Therefore, we hypothesized that restraints that are valuable
for structure prediction will reduce the conformational search
space substantially. For the present study, we classify a crosslink-
ing restraint as useful for structure prediction if it discriminate at
least 50% of all possible conformations. Thus, in a second step each
of the possible crosslinks was evaluated in terms of its potential to
discriminate at least 50% of incorrect structures (useful for struc-
ture determination) or whether the crosslinked amino acids are
so close in sequence that it can be derived from sequence separa-
tion that the distance can be bridged by the crosslinker indepen-
dently of the protein’s structure (not useful for structure
determination).

In order to develop a stringent measure for usefulness we did
not simply assume the maximum distance that can be bridged
by an amino acid chain of a certain length. Rather the Euclidian dis-
tance distributions for Lys–Lys, Lys–Glu, and Lys–Asp were com-
puted for the sequence separations ranging from 1 to 60 amino
acids within our database of protein structures. For example, in
the more than 2000 analyzed structures there are 3132 Lys–Lys

pairs, which are separated by 10 amino acids. For this sequence
distance Euclidian distances bins of 2.5 Å where defined in which
the occurrences of residue pairs were counted. The pairs were pre-
sent in bins ranging from 2.5 to 35.0 Å. As the median distance, we
found 15.5 Å. For the same sequence distance the distribution of
Lys–Glu (3336 pairs) and Lys–Asp (3010 pairs) are quite similar
and the median values were 15.6 Å and 15.3 Å.

Similarly, for sequence separations of 15 amino acids we
observed 3024 Lys–Lys pairs, 3200 Lys–Glu pairs, and 2835 Lys–
Asp pairs. The median values are 20.8 Å, 20.9 Å, and 20.7 Å, respec-
tively. For sequence separations of 60 amino acids, we observed
2167 Lys–Lys pairs, 2212 Lys–Glu pairs, and 2167 Lys–Asp pairs.
The median values are 23.0 Å, 23.0 Å, and 23.0 Å, respectively
(Fig. 2A).

Approximating the proteins structures as spheres, we applied a
logarithmical model to fit the relationship between the sequence
separation (S) and the median Euclidean distance (Emed) (Fig. 2B–
D). We find (i) ELys–Lys = 5.46⁄ln(SLys–Lys) + 2.2, (ii) ELys–Glu =
5.37⁄ln(SLys–Glu) + 2.36, and (iii) ELys–Asp = 5.19⁄ln(SLys–Asp) + 2.36
for Lys–Lys, Lys–Glu, and Lys–Asp distances, respectively.

Secondly, using our derived functions constituting the S/E rela-
tionships, we considered every crosslink as of reasonable discrim-
inative power, i.e. which fulfills the criterion that the sum of the
crosslinker spacer length and the average length of both contribut-
ing side chains is shorter than the median of the
sequence/Euclidean-distance distribution. If we examine the
25 kDa MW bins of Lys–Lys targets with a 1 Å spacer crosslink
1167 of the possible 22,398 target pairs fulfilled this criterion
and were considered as of sufficient discriminative power
(Fig. 3A). These crosslinks, which represent 4% of all Lys–Lys dis-
tances we defined therefore as useful for protein structure predic-
tion. Application of a 13 Å spacer length results in 2935 valuable
target pairs (12% of all Lys–Lys distances) (Fig. 3B). In contrast, a
crosslinker with a spacer length of 60 Å would allow to crosslink
all distances. However, none of the crosslinks would have discrim-
inative power for native-like models (Fig. 3C). For the proteins of
the 25 kDa MW bins the number of valuable crosslinks as a func-
tion of the crosslinker length has a log-normal character never
exceeding a roughly 25 Å spacer. The intermediate length of 13 Å
resulted in an almost equal contribution of valuable and struc-
turally invaluable crosslinking pairs. Whereas 29% of all possible
reactive amino acid pairs are linked, 12% are considered valuable
according for structure prediction (Fig. 3).

Table 3
Comparison between structure prediction results with and without crosslinking restraints by using geometrical restraints obtained from crosslinking experiments, the size of the
sampling space can be reduced resulting in an improved sampling accuracy. This is shown by significant improvements in the RMSD100 value of the most accurate model (best).
Furthermore, crosslinking restraints provide geometrical information, which improves the discrimination power of the scoring function, leading to an improvement in the
enrichment (e). Bold entries indicate proteins for which experimental data was available.

Protein Without restraints Optimal Lys/Lys All Lys/Lys lengths All reactivities

Best E Best e Best e Best e

1hrc 4.5 0.8 3.8 2.0 3.8 2.0 3.7 5.9
3iv4 6.7 1.2 5.7 2.5 5.3 2.5 5.2 1.9
1bgf 6.6 1.0 5.7 2.1 4.9 2.4 6.2 1.6
1t3y 7.0 1.7 6.4 2.9 5.7 3.0 6.2 2.3
3m1x 3.8 0.7 3.8 0.7 3.6 1.5 3.6 1.7
1x91 4.8 2.0 4.8 2.0 2.0 3.2 2.1 3.5
1jl1 6.4 1.2 5.6 2.1 5.3 2.8 5.1 2.7
1mbo 7.1 0.8 6.4 2.0 6.5 1.6 4.2 2.5
2qnl 7.0 1.0 4.8 1.9 4.1 2.1 6.1 2.1
2ap3 2.5 1.6 2.0 3.0 1.6 3.1 2.2 2.0
1j77 6.8 0.5 5.0 2.0 4.0 2.4 3.8 3.2
1es9 7.3 1.1 5.7 2.1 5.6 2.8 6.3 2.9
3b5o 9.2 1.4 8.6 1.9 9.0 2.6 7.1 1.9
1xq0 9.9 1.1 8.3 1.9 8.5 2.4 7.4 2.1
2ixm 9.4 1.1 7.9 1.7 8.5 1.7 7.0 1.9

Ø 6.6 1.1 5.6 2.1 5.2 2.4 5.1 2.6
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3.4. Prediction of MW dependent optimal crosslinker spacer lengths

Whereas usage of a short crosslinker will result in only a few
but mostly structurally valuable restraints, a longer crosslinker will

yield more restraints but a lower ratio of valuable restraints.
Furthermore, the ratio of valuable restraints as well as the number
of possible restraints depends on the size of the protein. In agree-
ment with prior studies regarding structural modeling driven by

Fig. 1. Workflow for (A) the prediction of optimal crosslinker spacer length and (B) for de novo protein structure prediction using BCL::Fold. (A) Workflow for the prediction of
the optimal spacer length depending on the MW of the protein of interest. (B) Workflow for de novo protein structure prediction using BCL::Fold. Secondary structure
elements (SSEs) are predicted using PsiPred and Jufo9D. A Monte Carlo Metropolis algorithm subsequently searches the conformational space for the structure with most
favorable score.

Fig. 2. (A) Distribution of the number of Lys–Lys pairs in respect to their Euclidean distance and (B–D) functions representing the relationship between sequence and spatial
distance approximated by method of least squares to a logarithmic equation for (B) Lys–Lys, (C) Lys–Glu, and (D) Lys–Asp.
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sparse distance restraints [38], we hypothesize that a compromise
between maximizing the portion of valuable crosslinks compared
to all crosslinks which can be formed with a given crosslinker

length #valuable cross links
#possible cross links

! "
and maximizing the relative number of

valuable crosslinks compared to the maximal number of achiev-

able valuable crosslinks with any spacer length #valuable cross links
#valuablemax

! "

might yield the best results.
Following our hypothesis, for each MW bin we derived the opti-

mal spacer length as the intersection point of the two functions as
it is shown exemplarily for MW 25 kDa in Fig. 4.

The derived optimal spacer lengths for Lys–Lys, Lys–Asp, and
Lys–Glu were plotted as function of the MW (Fig. 5A–C). The rela-
tionship was fitted using a cube root function. For our observable
MW sample space for Lys–Lys crosslinks, all spacer lengths reached
dimensions between 5.0 Å and 18.6 Å. No optimal spacer length
was further than 2.5 Å separated from the regression curve. The
average distance from the modeled spacer lengths was 0.7 Å. The
MW term as well as the side chain term has been modeled as an
exponential fraction in respect to the relation between volume
and distances in spherical objects.

Additionally, the optimal spacer lengths were also predicted for
homobifunctional arginine and for homobifunctional cysteine
crosslinking reagents analogously to the procedure being descript
for the homo- and heterobifunctional lysine-containing crosslinks.
(Supplementary Fig. S2). Consistently, the optimal spacer lengths
depend on the molecular weight MW as well as the lengths of
the crosslinked sidechains SS1 and SS2 and could be calculated
by lopt:½Å* ¼ k #

ffiffiffiffiffiffiffiffiffiffi
MW3
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS1þ SS23
p

. k was determined to be 0.32,
0.31, 0.34, 0.34, and 0.35 for Lys–Lys, Lys–Asp, Lys–Glu, Arg–Arg,
and Cys–Cys, respectively.

3.5. Generation of in silico and experimental crosslinking data for
testing the effect of different spacer length for de novo modeling

To evaluate the effect of crosslinking data derived from experi-
ments with different spacer length we folded 17 proteins de novo
with BCL::fold (Fig. 1B). Thirteen proteins were part of our dataset
while for four proteins experimental crosslinking data were avail-
able (3mbo, 1hrc, 1fga, and 4hre) (Table 1). All Proteins have a MW
between 13 to 27 kDa. Most structures were mainly a-helical with

Fig. 3. Distribution of all possible and valuable Lys–Lys pairs for a 25–27.5 kDa weight bin. Gray bars show all theoretical pairs in their specific distance cluster of ±2.5 Å. Red
bars show pairs that could be connected in respect to their surface distance by a specific crosslink (here 1 Å, 13 Å and 60 Å) always including the side chain contribution to the
overall length. Green bars show pairs that are considered valuable by our proposed scoring function. Pie charts show the accumulated number of crosslinks for every spacer
length.

Fig. 4. Behavior of valuable and possible crosslinks in the MW bin 25 kDa and
localization of the optimal spacer length. Shown is the number of valuable
crosslinks for every tested spacer length in red. These values are normalized to a
dimension spanning 1. Blue points show the share of valuable crosslinks among the
physical possible ones. The dotted line meets the intersection of both curves and
represents the optimal spacer length where the best ratio between valuable and
possible crosslinks is attained and the number of valuable crosslinks is maximized
in respect to this ratio.
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fewer b-strand secondary structure elements. The b-sheet content
ranged from 0% to 51%. The a-helical content ranges from 2% to
81%. The highest b-sheet content showed 1lmi with also the fewest
a-helices. The portion of lysines was between 3% and 23%, which
resulted in minimal 4 and maximal 46 lysine residues per struc-
ture. For the two structures 3mbo and 1hrc, which were studied
experimentally, we used the published experimental data, which
were obtained using DSG, DSS/BS3, and DEST [25]. For 3mbo, there
were 8 crosslinks in total with the 11.4 Å reagent BS3 four of them
confirmed with the 7.7 Å reagent DSG. For 1hrc, 48 crosslinks were
reported. 9 DSS, 31 BS3, 6 DSG and 9 with DEST (11 Å). Six cross-
links had been identified with different crosslinking reagents. 18
BS3 crosslinks were published for 1fga [19] whereas 3 intramolec-
ular BS3 crosslinks were available for 1hre [31]. For the thirteen
proteins as well as for 3mbo and 1hrc, we predicted all crosslinks,
which are possible with the predicted optimal crosslinker length as
well as with two shorter and two longer crosslinking reagents
(Table 2) and used these data as restraints during modeling
(Supplementary Fig. S3).

3.6. Crosslinking restraints improve the sampling accuracy of de novo
protein structure prediction

XL-MS data provides structural restraints that reduce the sam-
pling space in de novo structure determination. Thereby a fraction

of incorrect conformations is excluded and the sampling density in
all other areas of the conformational space is increased. To evaluate
the power of crosslinking restraints to guide de novo protein struc-
ture determination we computed the RMSD100 [37] values of the
most accurate models (best) for each protein for structure predic-
tion with and without crosslinking restraints. Using crosslinking
restraints not only increases the frequency with which accurate
models are sampled, but the best models achieve an accuracy not
sampled in the absence of crosslinking data (Table 3). Across all
benchmark proteins, the accuracy of the best models was, on aver-
age, 6.6 Å when no crosslinking data was used. By using crosslink-
ing, data for the spacer length deemed optimal the average
RMSD100 value was improved to 5.6 Å, which corresponds to
two standard deviations. By using restraints obtained for all five
spacer lengths, the average accuracy of the best model improved
to 5.2 Å. For the proteins 1xq0, 2ixm, and 3b50 even with
crosslinking data, it was not possible to sample a native-like con-
formation. We attribute this to limitations in the sampling algo-
rithm resulting in the native conformation not being part of the
sampling space. For other proteins, significant improvements could
be observed. While the accuracy of the best models for 1es9 and
1j77 was 7.3 Å and 6.8 Å, crosslinking restraints improved the
accuracy to 5.7 Å and 4.5 Å, respectively. For 1mbo, the accuracy
could be increased from 7.1 Å to 4.2 Å by using a combination of
Lys–Glu/Asp reactive crosslinkers (Fig. 6).

3.7. Crosslinking restraints improve the discriminative power of the
scoring function

The ability of the scoring function to identify the most accurate
models among the sampled ones was quantified using the enrich-
ment metric (see Methods). Enrichments were computed for pro-
teins predicted without crosslinking data, for each spacer length
and for all spacer lengths combined. For protein structure predic-
tion without crosslinking restraints an average enrichment of 1.1
was measured, which is barely better than random selection. The
scoring function has almost no discriminative power. Using
crosslinking restraints yielded by the optimal spacer length
improved the enrichment to 2.1 (Table 3), which corresponds to
three standard deviations. Using all five spacer lengths to obtain
additional restraints further improves the enrichment to 2.4. The
most significant improvement could be observed for 1j77, for
which the enrichment could be improved from 0.5 to 2.4.

3.8. The crosslinker length determines improvements in sampling
accuracy and discrimination power

The length of the crosslinker determines the number of obtain-
able restraints as well as their information content [9]. While a
longer crosslinker is able to form more crosslinks and therefore
yields a larger number of restraints, the longer crosslinker length
can be fulfilled by a larger number of conformations, reducing
the discriminative power of the restraint. In order to assess the
influence of the crosslinker length, and therefore the number of
restraints and restraint distances, on the sampling accuracy and
discrimination power, the protein structure prediction protocol
was conducted with restraints derived from different crosslinker
lengths.

The crosslinker lengths were separated into five groups: opti-
mal, which is the predicted optimal crosslinker length, short1 and
short2, which are shorter crosslinker lengths, and long1 and long2,
which are longer crosslinker lengths. The crosslinker length pre-
dicted to be optimal yielded the most useful restraints for protein
structure prediction in terms of sampling accuracy and discrimina-
tive power. Across all proteins the average RMSD100 values of the
most accurate models for the optimal crosslinker length were 5.6 Å

Fig. 5. Functions representing the relationship between sequence (S) and spatial
distance (E). The equations approximated by method of least squares to a
logarithmic equation for (A) Lys–Lys, (B) Lys–Glu, and (C) Lys–Asp.
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– an improvement by 15% – while they were 6.3 Å, 6.2 Å, 5.9 Å and
6.1 Å – improvements by 5%, 6%, 11% and 8% – for the shorter and
longer crosslinker lengths, respectively (Fig. 7A, Supplementary
Table S1). The longest crosslinkers have a less significant impact
on the sampling accuracy due to their ambiguity, while the short-
est crosslinkers failed to yield a sufficient number of distance
restraints to impact prediction accuracy. The discriminative power,
quantified through the enrichment metric, for the optimal crosslin-
ker length was 2.1, while it was 1.4, 1.5, 1.9, and 1.7 for the shorter
and longer crosslinkers, respectively (Fig. 7B). For the proteins
1x91 and 3m1x the optimal crosslinker length did not yield any
crosslinks with a sequence separation of at least ten and therefore
did not provide relevant structural information. In those cases pro-
tein structure prediction with longer crosslinker lengths provided
better results. By combining restraints obtained for all five cross-
linker lengths, the average enrichment value could be improved
to 2.4.

3.9. Combination of crosslinkers with different reactivities results in
improvements larger than seen when varying the spacer lengths

In order to obtain valuable restraints for de novo protein struc-
ture prediction a maximum number of SSE pairs needs to be cross-
linked. The availability of Lys–Asp/Glu reactive crosslinkers allows
for a better sequence coverage and therefore a wider coverage of
SSE pairs. Crosslinks with different spacer lengths were simulated
for the proteins in the benchmark set using Xwalk (Supplementary
Table S2). To assess the influence of Lys–Asp/Glu reactive
crosslinkers on protein structure prediction the same protocol

was applied as for the Lys–Lys reactive crosslinkers. For the Lys–
Glu reactive crosslinkers a prediction accuracy of 5.7 Å and enrich-
ment of 2.2 on average could be achieved, which is comparable to
the results for the Lys–Lys reactive crosslinkers (Supplementary
Table S3).

While Lys–Asp reactive crosslinkers also achieve improvements
in prediction accuracy and enrichment when compared to protein
structure prediction without restraints, the results are slightly
worse than for Lys–Lys reactive crosslinkers with an average pre-
diction accuracy of 6.0 Å versus 5.6 Å and an average enrichment
of 1.7 versus 2.1 (Supplementary Table S3). To a large part, the dif-
ference in the overall results is caused by the results for the pro-
teins 1es9, 1t3y, and 3m1x for which Lys–Asp reactive
crosslinkers failed to yield restraints between SSE pairs and there-
fore failed to reduce the conformational space significantly. Besides
deviations regarding the average improvements over all proteins,
the spacer length deemed optimal also provides the best results
for Lys–Asp/Glu reactive crosslinking (Supplementary Tables S4
and S5). Combining the restraints yielded for the optimal spacer
lengths with Lys–Lys/Asp/Glu reactive crosslinks improves the
sampling average sampling accuracy to 5.1 Å and the average
enrichment to 2.6. Combining the restraints yielded by all spacer
lengths and crosslinker reactivities failed to further improve pre-
diction results.

4. Discussion

4.1. Prediction of the optimal crosslinker spacer length

It has been shown frequently that chemical crosslinking data
can be used to guide de novo structure prediction and selection
of native-like models. Surely, the sensitivity, the broad applicabil-
ity to almost all proteins, the nearly physiological experimental
condition during the chemical crosslinking reaction, and the poten-
tial of automation are the main advantages for using XL-MS to gen-
erate such restraints. However, the small number and high
uncertainty of restraints from chemical crosslinks limit impact on
de novo proteins structure prediction, in particular when compared
to more data rich methods such as NMR spectroscopy [12].

One major limitation is the fact that distances between the
functional groups in long and flexible amino acid sidechains are
measured. Therefore, a significant uncertainty is added to the
crosslinker length when converting XL-MS data into Cb–Cb
restraints. A second challenge of chemical crosslinks is that only
the maximum distance is restricted, but no information is obtained
on the minimum distance or the favored distance distribution. In
result, even a ‘‘zero length’’ crosslinker restricts is the Cb–Cb dis-
tance to the sum of the lengths of the two connected sidechains
(e.g. for Lys–Lys crosslinks 9.1 Å).

In most of the crosslinking experiments, lysine residues are tar-
geted. Lysines are excellent targets because of their overrepresen-
tation on protein surfaces and the clean chemistry of amine
modification. Nevertheless, their frequency is on average only
about 7%. As a consequence the number of crosslinks which can
be formed e.g. in a 25 kDa protein with a standard homobifunc-
tional Lys–Lys-reactive crosslinking reagents with a spacer length
of 6.4 Å (length of DST) are in the range of about 20. Only a small
fraction of these restraints will substantially limit the conforma-
tional space for the protein. This number is usually too small to
restrict the conformational space to an unambiguous single protein
fold. To increase the number of restrains it is possible to use
crosslinkers with longer spacer length or target amino acids such
as Asp, Glu, Tyr, Ser, Thr, Arg, or Cys.

Restraints obtained with longer crosslinking reagents are less
restrictive to the conformational space. To evaluate the value of

Fig. 6. Most accurate models sampled with and without using crosslinking
restraints. The RMSD100 values of the most accurate models sampled for 1x91,
1j77, and 1mbo were 4.8 Å, 6.8 Å, and 7.1 Å. By using restraints yielded by Lys–Lys/
Asp/Glu reactive crosslinkers, the accuracy could be improved to 2.7 Å, 5.0 Å, and
4.2 Å. Shown are the native structures of 1x91, 1j77, and 1mbo (A, D, G), the most
accurate models sampled without crosslinking restraints (B, E, H), and the most
accurate models sampled with crosslinking restraints (C, F, I). Selected restraints are
shown that are not fulfilled in the model predicted without crosslinking data (red
bars), but that are fulfilled in the model predicted with crosslinking data (black
bars).
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crosslinks for protein structure prediction we determined for each
sequence distance (0–60 amino acids) how long a crosslinker has
to be to link the target amino acids. For example two lysines, which
are separated by eight amino acids in sequence were found to be
linkable in all 3488 cases by a homobifunctional crosslinker with
a length of >30 Å (as it is in BS(PEG)9). In our study, we stated
the hypothesis that it would be desirable if two target amino acids
can only be linked in 50% of all models created meaning that 50% of
all structures could be discarded based on a single crosslink. E.g. for
two lysines separated by 10 amino acids this would be the case for
crosslinker lengths of 14.8 Å (for further amino acids distances see
Fig. 2B). Crosslinks, which could only be formed in less than 50% for
the corresponding sequence distance, were considered as being
valuable. Based on this definition for all 2055 structures of the
applied non-redundant protein structure database the optimal
spacer length was calculated. With this optimal spacer length,
the number of structural valuable crosslinks has been maximized
taking into account that in general for modeling approaches few
distance restraints of highly discriminative character are less
favorable than a higher number with a smaller discriminative
power [27,38].

Since the optimal crosslinker length should depend on the pro-
tein size in a cubic root fashion to convert volume into distance, it
is not unexpected that this was also observed for the dependency
on the MW (Fig. 5). However, one has to keep in mind that the for-
mula might not be applicable to non-globular proteins and
multi-domain proteins. However, in case of multidomain proteins
this formula should be applicable to the separated domains.
Remarkably, based on our simulation for proteins with a MWs of
10, 25, 50, and 100 kDa the recommended spacer length are 9.0,
11.5, 13.9 and 17.0 Å, respectively, which is quite close to the
homobifunctional amine-reactive commercially available
crosslinkers DSG (7.7 Å), BS3 (11.4 Å) and EGS (16.1 Å) which are
currently the preferred choice to study small (<20 kDa), medium
(20–50 kDa) and large proteins (>50 kDa), respectively.

Addressing different functional groups is a second approach to
increase the total number of distance restraints. The consequence
is that the crosslinking reaction is either less effective or specific

(Asp, Glu, Tyr, Ser, Thr) creating challenges in data interpretation
or the target amino acids are less frequent (Arg and Cys) limiting
the number of restraints observed. However, using the same theo-
retical approach revealed that optimal spacer length for heterobi-
functional Lys–Asp and Lys–Glu crosslinker (Fig. 5) as well as
homobifunctional Cys–Cys and Arg–Arg crosslinker
(Supplementary Fig. S2) can be predicted with the same equation:
lopt:½Å* ¼ k #

ffiffiffiffiffiffiffiffiffiffi
MW3
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS1þ SS23
p

with k + 1
3 in which SS1 and SS2

are the average lengths of the crosslinked sidechains.
Comparing the two approaches to increase the number of valu-

able crosslinks, it should be pointed out that using several crosslink-
ing reagents with different reactivities results in significantly higher
improvement of the model quality than using only lysine reactive
crosslinking reagent but with different spacer length.

4.2. Challenges in using crosslinking data to guide de novo modeling

To test whether the crosslinker with the predicted optimal
spacer length indeed perform best in modeling we have chosen a
de novo structure prediction approach BCL::Fold for testing. Even
though comparative modeling using known protein structures as
a template usually performs better then de novo modeling, our goal
was to maximize impact of XL-MS restraints.

A major limiting factor for de novo protein structure prediction
is the vast size of the conformational space. Crosslinking restraints
can aid the computational prediction of a protein’s tertiary struc-
ture by drastically reducing the size of the sampling space.
Crosslinking experiments yield a maximum Euclidean distance
between the crosslinked residues, which increases the sampling
density in the relevant part of the conformational space.

A major limitation of using crosslinking restraints to guide pro-
tein structure prediction when compared to restraints obtained
from EPR and NMR spectroscopy is that the crosslinker length can-
not be directly translated into a Euclidean distance between the
crosslinked residues. While crosslink prediction and evaluation
methods like Xwalk [22] are successful at predicting if a certain
crosslink can be formed in a given structure, explicit modeling
approaches are computationally too expensive for usage in a rapid

Fig. 7. Crosslinking data improve prediction accuracy and discrimination power. Using geometrical restraints derived from crosslinking experiments reduces the size of the
conformational space, which needs to be searched for the conformation with the lowest free energy. This results in a higher likelihood of sampling accurate models and an
improved discrimination power of the scoring function. Panel A compares the RMSD100 values of the most accurate model for structure prediction from different spacer
lengths to the results for the optimal spacer length (horizontal line). Panel B compares the enrichments for different spacer lengths likewise.
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scoring function required for protein structure prediction.
Approximations, such as the great circle on a sphere presented
here, are fast to compute but associated with increased uncertain-
ties. Most of the crosslinkers used can cover a long Euclidean dis-
tance and therefore the yielded restraints can be fulfilled by a
wide variety of conformations. In spite of this, crosslinking
restraints display some potential in limiting the size of the sam-
pling space, resulting in a higher density of accurate models.
Further, the geometrical restraints derived from XL-MS allow for
the discrimination of a significant fraction of models representing
incorrect topologies and therefore improve the discriminative
power of the scoring function.

4.3. Abilities and limitations of protein structure prediction from
limited experimental data

We showed that incorporation of crosslinking data into a de
novo protein structure prediction method improves the accuracy
of the structure prediction. The two major challenges of de novo
predictions are the sampling of structures as well as the discrimi-
nation of inaccurate structures. In this study reduction of the con-
formational space was achieved through the assembly of predicted
SSEs with limited flexibility and the incorporation of geometrical
restraints derived from crosslinking data. The discrimination of
inaccurate models is performed through a scoring function which
approximates the free energy. Assuming that the native structure
is in the global energy minimum, complete sampling and an accu-
rate methods to measure free energy would lead to the correct
identification of the native conformation. However, the conforma-
tional space is too large to be extensively sampled and the free
energy needs to be approximated, which results in ambiguity
regarding the model which is most similar to the native structure.
Incorporating crosslinking data provides geometrical restraints
which can be used as additional criteria to discriminate inaccurate
models. While an average sampling accuracy of 5.1 Å, when using
restraints yielded XL-MS, is a significant improvement over the
6.6 Å, when not using crosslinking data at all, only for four proteins
it was possible to sample models with an RMSD100 of less than 4 Å
when compared to the crystal structure. Crosslinking data yields
an upper boundary for the Euclidean distance of the crosslinked
residues, which allows for the placement of the second residue
within a sphere of volume 4/3pr3 around the first residue.
Depending on the crosslink distribution, topologically different
models can fulfill the same restraint set. Discrimination among
those models is impossible with XL-MS restraints.

4.4. Comparison of experimental and in silico crosslinks

In order to draw general conclusion based on the analysis of
hundreds of different structures this study relies mainly on virtual
crosslinking experiments. Unfortunately, although extensive
XL-MS datasets have been published for several proteins, it proved
difficult to obtain suitable experimental datasets for the present
benchmark due to additional requirements: (i) the protein must
be monomeric and small enough for de novo protein folding with
BCL::Fold (ii) an experimental atomic detail structure for compar-
ison and (iii) a large dataset of intramolecular crosslinks must be
available. Results for the four cases p11, FGF2, cytochrome c, and
oxymyoglobin that came closest are reported to demonstrate our
efforts to work not only with simulated data. However, for p11
and FGF2 using experimentally determined restraints did not
improve the prediction results in a statistically significant way.
For p11, only three restraints were available with a maximum
sequence separation of nine residues. Because of the small
sequence separation, these restraints contain very limited struc-
tural information and no improvement in de novo folding can be

expected. The tertiary structure of FGF2 contains twelve
b-strands with several b-strands that are strongly bent. This pro-
tein is too large for de novo structure determination with
BCL::Fold. As BCL::Fold is unable to sample the conformation of
the protein in the first place, no significant improvement was
expected or observed when XL-MS data were added.
Nevertheless, the value of the predicted crosslinks in comparison
to experimental crosslinks could be validated with the two pro-
teins cytochrome c and oxymyoglobin for which experimental
crosslinks had been published in the XL database [16]. For cyto-
chrome c (PDB entry 1hrc), we indeed found that the crosslinker
with predicted optimal spacer length of 10.2 Å performed best.
However, for oxymyoglobin (PDB entry 1mbo) the longer spacers
improved the accuracy slightly more than the crosslinker with
the optimal spacer length. Interestingly, on the one hand for both
proteins several crosslinks, which should be possible, could not
be detected, which might be due to experimental or analytical rea-
sons. On the other hand, also several crosslinks, which were exper-
imentally, identified which were not predicted. An examination of
these data revealed that most of these crosslinks are not present in
the virtual data set because their Cb–Cb distances exceed the
expected maximum length. This finding is in agreement with
Merkley et al. [39] who evaluated protein structures by molecular
dynamics and reported that usually a high number of experimental
approved crosslinks exceed the theoretical maximal spatial dis-
tance due to structure flexibility. It was concluded for the investi-
gation of Lys–Lys distances using a BS3/DSS crosslinking reagent an
upper bound of 26–30 Å for Ca atoms [39].

On the other hand, spacer conformations usually adapt lengths
that are somehow distributed between their minimal and maximal
lengths. In line it was also reported that many spacers in commer-
cially available crosslink agents preferable adopt conformations
which are significantly below the cited maximal spacer length
[40]. Thus, ideally crosslinking results should be evaluated based
on experimentally derived or simulated ensembles of in-solution
structures instead of using X-ray structures as reference.
However, to address all degrees of flexibility during the de novo
structure prediction is currently too resource intensive.
Furthermore, there are many additional practical challenges, which
may prevent the formation or identification of crosslinks, and thus
may result in more meaningful results using a crosslinker with a
non-optimal length. Nevertheless, for both structures the sampling
accuracies could also be improved by 0.7 Å based on the experi-
mental restraints, which is only slightly worse than the improve-
ment of 1.0 Å observed based on in silico crosslinks.

5. Conclusion

Recent development of high-resolution MS instruments enables
the analysis of proteins not accessible to NMR spectroscopy and
X-ray crystallography. Data obtained from those experiments can
be translated into structural restraints to guide protein structure
prediction. The information content of a geometrical restraint
obtained from XL-MS experiments is directly dependent on the
used spacer length. Thus, the choice of the spacer length is an
important step.

Firstly, for amino acids pairs close in sequence only minimum
structural information is obtained if the spacer is too long. Here
we determine the optimal spacer length to gain structural informa-
tion on lysines with a sequence separation of X, we estimated a
length as E ¼ 5:5 # lnðSÞ þ 2:2. Secondly, we demonstrate that for
de novo protein structure prediction the optimal spacer length
depends on the MW of the protein of interest and the length of
the crosslinked sidechains (ss) and can be predicted as
lopt:½Å* ¼ k #

ffiffiffiffiffiffiffiffiffiffi
MW3
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS1þ SS23
p

with k + 1
3 .
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We also demonstrate that restraints obtained from crosslinking
experiments contribute moderately to solving the major chal-
lenges of de novo protein structure prediction – the vast size of
the conformational space and discrimination of inaccurate models.
Using restraints from crosslinking experiments significantly
increases the sampling density of native-like models and con-
tribute to the discrimination of incorrect models. By combining
crosslinking restraints with knowledge-based scoring functions,
the average accuracy of the sampled models could be improved
by up to 2.2 Å and the average enrichment of accurate models
could be improved from 11% to 24%.

Conclusively we believe this study can help in the planing of
XL-MS experiments as well as to evaluate how much information
can be gained by XL-MS experiments and the ambiguity that
remains.
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