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Abstract
In silico prediction of a protein’s tertiary structure remains an unsolved problem. The com-

munity-wide Critical Assessment of Protein Structure Prediction (CASP) experiment pro-

vides a double-blind study to evaluate improvements in protein structure prediction

algorithms. We developed a protein structure prediction pipeline employing a three-stage

approach, consisting of low-resolution topology search, high-resolution refinement, and

molecular dynamics simulation to predict the tertiary structure of proteins from the primary

structure alone or including distance restraints either from predicted residue-residue con-

tacts, nuclear magnetic resonance (NMR) nuclear overhauser effect (NOE) experiments, or

mass spectroscopy (MS) cross-linking (XL) data. The protein structure prediction pipeline

was evaluated in the CASP11 experiment on twenty regular protein targets as well as thirty-

three ‘assisted’ protein targets, which also had distance restraints available. Although the

low-resolution topology search module was able to sample models with a global distance
test total score (GDT_TS) value greater than 30% for twelve out of twenty proteins, fre-

quently it was not possible to select the most accurate models for refinement, resulting in a

general decay of model quality over the course of the prediction pipeline. In this study, we

provide a detailed overall analysis, study one target protein in more detail as it travels

through the protein structure prediction pipeline, and evaluate the impact of limited experi-

mental data.

Introduction
In silico prediction of a protein’s tertiary structure from its sequence remains an unsolved prob-
lem. The vast size of the conformational space that needs to be sampled with limited CPU
cycles requires simplifications in sampling and scoring, often in conjunction with a simplified
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representation of the protein. Consequently, the depth of the native energy minimum is
reduced making it difficult to distinguish it from alternative energy minima [1–5]. The limited
sampling density results in an intrinsic, minimal deviation of the conformations sampled and
the lowest energy conformation that exists in each region of the conformational space further
adding to the uncertainty [1,3]. In addition, the environment of the protein–the cytoplasm or
the membrane–is represented in an implicit and static way, adding another layer of inaccuracy
in free energy evaluation.

The de novo protein structure prediction algorithm BCL::Fold [6] was developed to over-
come aforementioned problems and efficiently predict the topology of larger proteins with up
to 400 residues. The necessary complexity reduction of the sampling space is achieved by
assembling predicted secondary structure elements (SSEs) using a Monte Carlo algorithm and
omitting more flexible loop regions. The energy evaluation of the sampled models is conducted
using knowledge-based scoring functions [7], which provide a rapid way to approximate the
free energy of the sampled conformation. In a previous study, it was demonstrated that BCL::
Fold is able to efficiently sample the topologies of larger proteins [8]. Problems in model dis-
crimination, which can arise from necessary simplifications made to sampling, scoring, and
system representation, can be compensated for through incorporation of limited experimental
data from electron microscopy [9–11], nuclear magnetic resonance spectroscopy [12], electron
paramagnetic resonance spectroscopy [13,14], cross-linking experiments [15], small angle X-
ray and neutron scattering [16], and predicted residue-residue contacts.

To evaluate the accuracy of our protein structure prediction pipeline, we participated in the
community-wide Critical Assessment of Protein Structure Prediction (CASP) experiment in
2014 (CASP11), which takes place every two years [17]. Due to its setup as a double-blind
study, the CASP experiment provides an impartial benchmark for protein structure prediction
algorithms. The experimentally determined tertiary structures of the benchmark proteins are
withheld from predictors, assessors, and organizers until conclusion of the experiment. After
conclusion of the experiment, the experimentally determined structures are released to predic-
tors and assessors and the predicted structures are released to the assessors, who determine the
accuracy of the predictions. At the CASP11 experiment, the amino acid sequences of fifty-five
proteins were released to human predictors as regular targets (T0), i.e. without additional
experimental restraints. Several regular targets were rereleased as 'assisted' targets with addi-
tional structural information in terms of predicted residue-residue contacts (TP), only correct
residue-residue contacts (TC), nuclear magnetic resonance (NMR) nuclear overhauser effect
(NOE) restraints (TS), and mass spectrometry (MS) cross-linking (XL) restraints (TX). As of
June 2015, experimentally determined structures have been released for thirty regular protein
targets. Of those, we predicted the tertiary structure of twenty targets during the CASP11 exper-
iment. Therefore, the analyses in this study are based on twenty T0, twelve TP, twelve TC, eight
TS, and one TX protein target (Table 1).

In the Materials and Methods section, we describe in detail the protein structure prediction
pipeline employed in the CASP11 experiment. In addition, we define the different quality met-
rics used in this study and we introduce the subset of the CASP11 benchmark set analyzed in
this study. The Results section reports the accuracy gained from the different pipeline modules
and describes the protein structure prediction pipeline on hand for one regular target in detail.
The Discussion section discusses the successes and failures of our pipeline.

Materials and Methods
This section describes the different modules of the employed protein structure prediction pipe-
line, followed by a subsection describing how clustering was used to aggregate and transfer
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models between the different pipeline modules. Subsequent subsections describe the quality
metrics used to quantify the results in terms of sampling accuracy and model discrimination.
This section is concluded by a summary of the proteins used in this study.

Low-Resolution Topology Search with BCL::Fold
BCL::Fold was specifically developed to predict the topologies of large proteins with a low-reso-
lution approach. The BCL::Fold method was specifically designed to complement Rosetta by
predicting SSE-only models with likely topologies of the protein and feeding them into Rosetta
for loop and side chain construction as well as high-resolution refinement. The complexity of
the conformational space grows exponentially with the number of residues in the protein, ren-
dering exhaustive sampling of the conformational space impossible even for proteins with
sequence lengths less than 100 residues. Protein structure prediction groups have come up
with different approaches to address this problem. For example, Rosetta assembles the tertiary
structure of proteins by assembling short fragments collected from the Protein Data Bank
(PDB). This approach substantially reduces the complexity of the sampling space because the
dihedral angles are not exhaustively sampled. Using rotamer libraries provides a similar simpli-
fication for the side chain conformations. However, even with mentioned simplifications the
size of the conformational space remains too large for many proteins with more than 100

Table 1. The proteins used in this study for the CASP11 benchmark.

Target #res #α #β CO PDB ID Source Resol. [Å] Predicted as Baker [GDT_TS] Zhang [GDT_TS] Kihara [GDT_TS]

T0759 113 5 6 24 4Q28 X-ray 2.6 - 38 40 32

T0761 252 5 13 55 4PW1 X-ray 2.1 TP, TS, TC 14 15 16

T0763 134 3 11 52 4Q0Y X-ray 1.7 TP, TS, TC 15 19 18

T0765 98 3 4 59 4PWU X-ray 2.5 - 74 79 47

T0767 296 8 15 57 4QPV X-ray 1.8 TP, TS, TC, TX 13 16 15

T0769 112 2 4 44 2MQ8 NMR 4.3* - 75 81 74

T0771 186 3 10 56 4QE0 X-ray 1.9 - 23 24 22

T0781 390 12 17 75 4QAN X-ray 2.1 - 17 17 11

T0783 411 14 20 52 4CVH X-ray 2.4 - 44 47 44

T0785 145 1 9 30 4D0V X-ray 1.7 TP, TS, TC 26 27 26

T0794 506 6 28 61 4CYF X-ray 2.3 TP, TS, TC 45 44 36

T0803 520 2 12 34 4OGM X-ray 2.2 - 52 40 38

T0814 403 3 38 78 4R7F X-ray 2.3 TP, TS, TC 11 15 15

T0818 138 4 12 34 4R1K X-ray 2.6 TP, TS, TC 35 42 43

T0831 420 15 2 116 4QN1 X-ray 2.5 TP, TC 16 16 16

T0832 241 11 0 67 4RD8 X-ray 1.7 TP, TS, TC 13 17 17

T0834 222 10 6 51 4R7Q X-ray 2.0 TP, TC 14 16 20

T0848 326 9 18 50 4R4G X-ray 2.6 TP, TC 30 29 28

T0853 152 3 10 38 2MQB NMR 1.0* TP, TC 16 35 31

T0855 119 4 6 37 2MQD NMR 1.3* - 40 45 45

Twenty regular protein targets from the CASP11 benchmark set were used in this study. The proteins covered a wide range of structural features, like the

sequence length (#res), the number of α-helices and β-strands (#α and #β), as well as the complexity of their fold quantified through the contact order

metric (CO). Several regular targets were rereleased with limited experimental data in terms of predicted residue-residue contacts (TP). Only correct

residue-residue contacts (TC), NMR-NOE restraints (TS), and MS-XL restraints (TX). The GDT_TS values of the submitted models are shown for three

other groups (Baker [18], Zhang [19,20], and Kihara [21]) for comparison.

* Mean RMSD100 value between the models in the NMR ensemble

doi:10.1371/journal.pone.0152517.t001
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residues. Additionally, previous studies found that de novo prediction with Rosetta has a bias
towards structures with low contact order [22].

Unlike Rosetta, BCL::Fold assembles disconnected fragments with limited internal flexibility
to remove this bias. Secondary structure prediction methods are employed to assign the sec-
ondary structure to the sequence. For the resulting secondary structure elements (SSEs), initial
conformations are created from idealized dihedral angles (φ, ψ): (-60°, -40°) for α-helices and
(-135°, 135°) for β-strands. BCL::Fold assembles the SSEs in the three-dimensional space using
a Monte Carlo Metropolis algorithm. Unlike in Rosetta, loop regions connecting the SSEs are
not constructed explicitly, further reducing the complexity of the sampling and allowing for
changing the overall topology in a small number of Monte Carlo steps. Instead the likelihood
of the loop being able to close on the current conformation is predicted. Further complexity
reduction is achieved by representing the side chains as “superatoms”, avoiding sampling of
side chain conformations. BCL::Fold has this approach in common with Rosetta and other
modeling approaches. Although these simplifications of the structural representation allow for
an efficient enumeration of different topologies, a high-resolution scoring is no longer possible.
BCL::Fold employs low-resolution scoring functions to evaluate geometrical parameters of the
models created. These scoring functions include the likelihood of closing a loop given the num-
ber of amino acids and the Euclidean distance between two SSEs or if the twist angle between
SSEs allows for side chain interaction among others. Most scoring functions used in BCL::Fold
are knowledge-based, meaning they are derived from statistics over known protein structures

deposited in the PDB and based on the inverse Boltzmann relation E ¼ �RT � ln Pobs
Pback

, with

Pobs being the probability of observing a specific feature and Pback being the probability of
observing the specific feature by chance. The normalization by Pback is conducted to ensure
that favorable states are assigned a negative score and unfavorable states are assigned a positive
score. For example, the scoring function evaluating the burial of residues quantifies the degree
of burial using the neighbor count metric [23]. For each amino acid type, the occurrences of its
neighbor count values were collected from structures deposited in the PDB. The values were
binned and the probability of each bin was computed and used as Pobs. The background proba-
bility Pback was in this case the normalized sum of all normalized amino acid exposure distribu-
tions [7]. The BCL scoring function is the weighted sum of all scoring terms.

Protein Structure Prediction Pipeline
The protein structure prediction pipeline consisted of three modules (Fig 1). The first module
consisted of a low-resolution topology search, which applied large-scale structural perturba-
tions to the model in conjunction with a rapid low-resolution scoring function (Procedure A in
S1 Protocol). The second module consisted of a high-resolution structural refinement, which
only applied small-scale structural perturbations to the model in conjunction with a high-reso-
lution scoring function while also constructing loop regions and placing the side chains (Proce-
dure C in S1 Protocol). The third module consisted of a molecular dynamics (MD) simulation
for further structural refinement and evaluation of model stability. The three modules were
connected through filtering and clustering steps (Procedure B in S1 Protocol).

The protocol for the first module was based on the protein structure prediction protocol of
BCL::Fold for soluble proteins [6]. In a first step, the secondary structure prediction methods
Jufo9D [24], PsiPred [25], and MASP [26] were employed to predict the protein’s secondary
structure. The protein’s tertiary structure was subsequently assembled from the predicted SSEs
through a Monte Carlo sampling algorithm with a Metropolis criterion. After each Monte
Carlo step, the model was evaluated using the weighted sum of multiple knowledge-based scor-
ing functions including SSE packing, radius of gyration, residue exposure, residue pairing, loop
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closure geometry as well as residue-residue and SSE-SSE clashes [7]. Depending on the score
difference to the previous Monte Carlo step and the simulated temperature, the new model was
either accepted or rejected by the Metropolis criterion. The Monte Carlo Metropolis optimiza-
tion was broken into six stages. The first five stages consisted of large-scale structural perturba-
tions to search the energy landscape for minima. The employed perturbations included adding
SSEs from the predicted SSE pool, removing SSEs from the model, large-scale translations and
rotations of SSEs as well as the flipping and swapping of SSEs and SSE domains. Over the
course of the first five stages, the weights of the scores evaluating clashes between residues and
SSEs ramped up from 0 to 125, 250, 375, and 500. The five stages applying large-scale structural
perturbations were followed by one stage of small-scale structural perturbations to transfer the
model to the local energy minimum. If residue-residue contacts, nuclear overhauser effect
(NOE) data, or cross-linking (MS-XL) data were available, the scoring function was extended
by the appropriate scoring terms [12,15]. For each protein target, the first module sampled
20,000 SSE-only models without side chains or loop regions.

Fig 1. Protein structure prediction pipeline. The protein structure prediction pipeline employed in this study consisted of three modules–low-resolution
topology search (A), high-resolution refinement and loop construction (B), and MD refinement (C). (A) The low-resolution topology search is based on BCL::
Fold and uses machine learning algorithms to predict the secondary structure elements (SSEs) of the protein, which are subsequently arranged in the three-
dimensional space using a Monte Carlo Metropolis algorithm. (B) High-resolution refinement and loop construction takes place using Rosetta’s cyclic
coordinate descent algorithm followed by model relaxation. (C) Molecular dynamics simulations were conducted using the Amber package.

doi:10.1371/journal.pone.0152517.g001
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On conclusion of the first module, the models were ranked according to completeness. The
25% to 50% of the models with the lowest completeness were filtered out. The filtering thresh-
old was chosen in dependence of the maximum completeness achieved throughout the confor-
mation sampling. For the different targets, 10,000 to 15,000 models remained. For the
remaining models, clustering was used to detect limit points in the sampling space, which indi-
cate energy minima. The clustering was performed using a k-means implementation in the R
package. For the different targets, this resulted in 10 to 50 clusters. The cluster medoids were
subsequently selected as start models for the second module.

The protocol for the second module was based on Rosetta [27,28], added loop regions and
side chains to the model, and conducted a high-resolution refinement. For each of the models
resulting from the previous clustering step, 1,000 models were sampled using Rosetta’s cyclic
coordinate descent algorithm [28] followed by model relaxation using Rosetta’s ‘relax’ applica-
tion [27]. Per target, this module resulted in 10,000 to 50,000 models.

On conclusion of the second module, the models were ranked according to their Rosetta
score and the 80% of the models with the worst score were discarded. The remaining 2,000 to
10,000 models were clustered according to the same criteria as the first clustering step. After fil-
tering out clusters with a population of less than 0.5% of all models, this step resulted in 10 to
35 clusters. The cluster medoids were subsequently selected for high-resolution refinement and
stability evaluation through MD simulations.

The third module consisted of MD simulations using the Amber package [29]. Hierarchical
clustering was used to identify the sub-states for each model. Subsequently, a representative of
each cluster was relaxed and scored using Rosetta. This module resulted in 10 to 35 models,
which were visually inspected. From these models, five models were selected for submission
based on their Rosetta scores.

Using Clustering for Model Selection
The RMSD100 metric [30], which is the protein-size normalized root-mean-square deviation

(RMSD) of the Cα-coordinates and computed as RMSD100 ¼ RMSD=lnð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn=100Þp Þ, with n
being the number of residues in the protein, was used to quantify the distance between models.
The set of all models was sorted by their score and divided into the disjoint sets high and low.
The set low contained the 20% of the models with the most favorable score, whereas the set
high contained the remaining models. Both sets were clustered independently. The number of
clusters was optimized to minimize the cluster radii and to maximize the separation between
clusters, with an allowed maximum radius of 5 Å. Clusters that contained less than 0.5% of all
models were also filtered out. The clustering after loop construction and side chain placement
was conducted the same way as the clustering after the low-resolution homology search, but
only the 20% of the models with the most favorable Rosetta score were considered.

Molecular Dynamics Simulations
All simulations were prepared using Tleap [29] and simulations were performed with the
Amber package [29] using the ffSB98ildn force field [31]. Each refinement target was solvated
in a 10 Å TIP3P [32] water box with neutralizing Na+ or Cl- ions then equilibrated following a
modified procedure [33]. First, the solvent was minimized for 500 steps using steepest descent,
followed by 5,000 steps of conjugate gradient minimization. Next, the systems were heated
from 100 K to 300 K over 20ps with 500 kcal/mol/Å2 restraints on the protein followed by 30
ps of NPT at 300 K and 1 atm pressure. This process was repeated with restraints of 100, 50,
25, 12.5, and 1 kcal/mol/Å2. After equilibration, each structure consisted of a 50 ns NPT pro-
duction run at 300 K with periodic boundary conditions using Langevin dynamics [34] with a
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collision frequency of 5 ps-1. The electrostatics were calculated using particle mesh-ewald [35]
while a 10 Å cut-off was used to calculate long-range interactions The SHAKE [36,37] algo-
rithm constrained all covalent bonds with hydrogen atoms allowing a 2 fs time step. Each pro-
duction trajectory was analyzed using Cpptraj [38]. Hierarchical clustering using complete-
linkage was used to identify all sub-states for each model. Subsequently, one representative
from each cluster scored with the Rosetta [27] application.

Evaluation of the Prediction Accuracy
Sampling accuracy and model discrimination were evaluated. The sampling accuracy was quanti-
fied using the global distance test total score (GDT_TS) [39] metric. The GDT_TS is the average
percentage of Cα-coordinates in the model with a maximum deviation of 1 Å, 2 Å, 4 Å, and
8 Å from the experimentally determined structure. The GDT_TS is computed asGDT_TS =
(P1+P2+P4+P8) / 4, with Pi being the percentage of residues in the model that can be superim-
posed with maximum deviation of i Å from the experimentally determined structure. Model dis-
crimination is quantified through the enrichment metric, which equates to the percentage of the
most accurate models that can be selected by the scoring function.

Computation of Enrichments
The enrichment describes the correlation between model accuracy and score; thus, quantifying
how well the scoring function is able to distinguish accurate models from inaccurate models.
To compute the enrichment, the set of the sampled models S is divided into the disjoint subsets
P (positive) and N (negative). The positive set contains the 10% of the models in S, which have
the lowest RMSD100 value. The negative set contains the remaining models in S. In a second
step, S is divided again into the disjoint subsets PS (positive score) and NS (negative score). The
set PS contains the 10% of the models in S, which have the best score, whereas the set NS con-
tains the remaining models. By computing the intersection TP = P \ PS, the set of the models,
which can be identified by the scoring function, can be calculated. The enrichment is then cal-
culated as e = |TP|/|P| � 10, thus describing which fraction of the most accurate models can be
identified by the scoring function. Therefore, the enrichment can span a range from 0 to 10,
with 1 indicating random selection, enrichments larger than 1 indicating that the scoring func-
tion has the ability to recognize native-like models, and an enrichment of less than 1 indicating
that the scoring function is selecting against accurate models.

The CASP11 Benchmark Subset Used in This Study
The analyses in this study are based on twenty soluble proteins released as targets during the
CASP11 experiment. The twenty benchmark proteins covered a wide range of structural prop-
erties (Table 1), making them an appropriate test case for protein structure prediction algo-
rithms. The sequence length ranged from 109 to 470 residues and the secondary structure
content ranged from 6 to 41 SSEs. SSE definitions were obtained through DSSP [40]. The α-
helical content ranged from 1 to 15 SSEs, whereas the β-strand content ranged from 0 to 38
SSEs. The fold complexity quantified through the contact order metric [41] ranged from 34 to
116. Twelve of the twenty regular targets were also studied using with additional structural
data such as residue-residue contacts, NMR-NOE restraints, or MS-XL restraints (Table 1).

The Available Experimental Data
For twelve protein targets, limited experimental data was provided by the CASP organizers.
The experimental data included predicted residue-residue contacts (TP and TC), NMR-NOE
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restraints (TS), and MS-XL restraints (TX). The residue-residue contacts were predicted by
research groups participating in the CASP contact prediction experiment and included correct
and incorrect residue-residue contacts for the TP targets. After completion of the TP predic-
tions, a subset of the contacts only containing correct residue-residue contacts was released.
The NMR-NOE restraints were simulated by Gaetano Montelione’s group and incorrect
restraints were added purposefully. The XL-MS restraints were determined experimentally by
Juri Rappsilber’s group.

Results
This section is divided into subsections discussing the sampling accuracy and model discrimina-
tion of the low-resolution topology search module, followed by a subsection discussing the gen-
eral decay of model accuracy over the course of the protein structure prediction pipeline.
Subsequently, a case study for target T0769 describes in detail the processing of the data through
the protein structure prediction pipeline. This section is concluded by a subsection describing the
impact of different types of limited experimental data on protein structure prediction accuracy.

BCL::Fold Sampled Models with a GDT_TS Value Greater than 30% for
Twelve Out of Twenty Regular Targets
To quantify the ability of BCL::Fold to sample the topology of the target proteins, the GDT_TS
metric was used. The GDT_TS computes the average percentage of Cα-coordinates in the
model that deviate maximally 1 Å, 2 Å, 4 Å, and 8 Å from the experimentally determined struc-
ture (see Materials and Methods). For twelve out of twenty regular targets, BCL::Fold sampled
models with a GDT_TS value greater than 30% (Table 2 and Fig 2A). The average GDT_TS
value over all twenty regular targets was 36% (Table 2). The success in sampling accurate mod-
els strongly depended on the length of the protein's sequence (R-value of -0.8, Table 2 and Fig
2). Notably, there was no dependence on the complexity of the protein's topology as quantified
through the contact order metric (R-value of 0.0).

The BCL::Fold Scoring Function Was Frequently Unable to Select
Accurate Models
After conclusion of the first pipeline module–the low-resolution topology search–models were
selected for high-resolution refinement and loop construction with Rosetta. Although the
model selection was conducted using a clustering approach, how well the BCL::Fold scoring
function identifies accurate models remains an interesting question. The ability of the scoring
function to select the accurate models among the sampled models was quantified using the
enrichment metric (see Materials and Methods), which computes the percentage of the most
accurate models that can be selected by the scoring function.

Over all twenty regular targets the average enrichment was 1.4 (Table 2), meaning that 14%
of the most accurate 10% models could be selected by the BCL::Fold scoring function, which is
only slightly better than random selection. There was no clear correlation between the enrich-
ment and the sequence length, the complexity of the protein’s fold, or the number of α-helices
and β-strands in the protein (S1 Fig). However, the model selection in our pipeline was not
conducted through direct usage of the BCL score, but through clustering to identify limit
points, which indicate score minima. To evaluate the success of this approach, we computed
for each protein target the percentage of models that had a GDT_TS value greater or equals
40%, assuming with a high enough percentage, those models can be detected through cluster-
ing. A density in this context could be seen as significant if it surpassed the population cutoff of
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0.5% during the first clustering step. For the regular targets T0769, T0785, T0803, T0853, and
T0855 significant densities accounting for 54%, 1%, 47%, 4%, and 1% of all models could be
detected. For the remaining targets, the percentages of models with a correct topology were
below 0.5%. Notably, for four out of the five of the aforementioned protein targets, models
with a GDT_TS value greater or equals 40% could be detected through clustering (Table 2).

Table 2. Model accuracy decay over the course of the pipeline.

Fold Cluster Loop Cluster MD

Target GDT_TS e GDT_TS GDT_TS GDT_TS GDT_TS

T0759 36 1.0 29 26 21 22

T0761 32 0.8 29 19 15 17

T0763 28 1.3 20 24 19 19

T0765 46 0.4 32 50 26 26

T0767 25 1.1 20 15 13 13

T0769 74 3.3 66 69 66 77

T0771 36 1.5 27 22 18 18

T0781 20 1.3 15 12 9 9

T0783 16 1.6 10 13 10 9

T0785 46 1.0 40 26 22 22

T0794 24 1.1 14 11 10 8

T0803 64 2.7 13 26 21 16

T0814 15 1.2 10 9 7 8

T0818 42 2.0 37 34 24 18

T0831 30 2.0 21 17 14 12

T0832 35 1.1 25 22 19 19

T0834 26 1.3 19 15 12 10

T0848 26 1.6 20 12 11 11

T0853 53 0.8 42 27 23 17

T0855 49 1.1 40 33 28 18

; 36 1.4 26 24 20 18

The quality of the most accurate models decayed over the course of the protein structure prediction pipeline. For each pipeline module, the GDT_TS value

of the most accurate model is shown. For the low-resolution topology search, also the enrichment (e) is shown.

doi:10.1371/journal.pone.0152517.t002

Fig 2. Sampling accuracy andmodel discrimination for the protein targets. (A) GDT_TS value of the
most accurate model for each of the twenty regular targets sampled by the low-resolution topology search in
dependence of the protein’s sequence length. The coloring is according to the complexity of the protein’s fold
as quantified through the contact order metric (CO). (B) Model discrimination for each of the twenty regular
targets as quantified through the enrichment metric in dependence of the protein’s sequence length. The
coloring is according to the complexity of the protein’s fold quantified through the contact order metric (CO).

doi:10.1371/journal.pone.0152517.g002
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Model Accuracy Decayed over the Course of the Pipeline
The three different modules of our protein structure prediction pipeline were connected through
filtering and clustering. In an optimal scenario, the most accurate models would be detected
through clustering and transferred to the subsequent module. However, ambiguities in the
employed scoring function and the consequently biased sampling lead to difficulties in detecting
the most accurate models. In clustering, native-like conformations become detectable if a suffi-
ciently high density of models exists around it. For the four targets T0769, T0785, T0853, and
T0855, models with a GDT_TS value greater or equals 40% could be detected through clustering
after the low-resolution topology search and transferred to the second module for loop construc-
tion and side chain placement (Table 2 and Fig 3B). The average GDT_TS value of the most
accurate models for the four regular targets developed from 56% to 47%, and to 39% over the
course of the low-resolution topology search, the first clustering, and the loop construction and
side chain placement steps (Fig 3B). At general, a decay of model accuracy was observable over
the course of the protein structure prediction pipeline (Table 2 and Fig 3A). The average
GDT_TS values over all twenty regular targets dropped from 36% (low-resolution topology
search) to 26% (first clustering), to 24% (loop construction and side chain placement), to 20%
(second clustering), and to 18% (MD refinement). Expectedly, the most significant loss in model
accuracy happened during the transition for the low-resolution topology search to loop construc-
tion and side chain placement where the average GDT_TS value over all twenty regular targets
dropped from 36% to 24%. A significant improvement through MD refinement could only be
observed for regular target T0769 for which the GDT_TS value of the most accurate model
improved from 66% to 77%. For the other regular targets, the GDT_TS value of the most accu-
rate start model was 27% or less and MD refinement consequently was not able to improve the
accuracy of the model. For the previously mentioned regular target T0765, the most accurate
models sampled by the loop construction and side chain placement module could not be detected
through the clustering and filtering step before MD refinement.

A Case Study of Regular Target T0769
The regular target T0769 was a 112-residue-long soluble protein consisting of two α-helices and
four β-strands, resembling a ferredoxin fold. The first module of our protein structure prediction
pipeline—the low-resolution topology search—sampled models with GDT_TS values of up to
74% (Table 2 and Fig 4A). An enrichment of 3.3 was observed indicating that 33% of the 10%

Fig 3. Model accuracy decay over the course of the protein structure prediction pipeline. (A) The
model accuracy decayed over the course of the protein structure prediction pipeline. The black bars show the
average GDT_TS value of the most accurate model over all twenty regular targets after each pipeline
module. The lines show the development of model accuracy for each target over the course of the pipeline.
The coloring is according to the number of residues in the protein target. (B) Same as in (A) for four selected
targets with a GDT_TS value of greater than 40% after the first clustering step.

doi:10.1371/journal.pone.0152517.g003
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most accurate models could be selected by the scoring function. About 69% of all models had the
correct topology. Through clustering, a model with a GDT_TS value of 65% could be detected
(Table 2 and Fig 4B). In the second module of the pipeline, the loop regions were constructed
and the side chains were placed. The most accurate model resulting from this pipeline module
arrived at a GDT_TS value of 69% (Fig 4C and 4D). The models resulting from the second mod-
ule were clustered again and the cluster medoids selected for MD refinement. The most accurate
medoid had a GDT_TS value of 66%. Upon conclusion of the MD simulations, the refined mod-
els were rescored using Rosetta and the model with the most favorable Rosetta score was desig-
nated as final model. The final model arrived at a GDT_TS value of 77% (Fig 4E and 4F).

The Impact of Limited Experimental Data on Protein Structure Prediction
Accuracy
If none of the participating groups in the CASP11 experiment was able to accurately predict the
tertiary structure of a regular target, this target was rereleased as 'assisted' target and additional
limited experimental data was provided. Of the twenty regular targets analyzed in this study,
twelve targets were rereleased as ‘assisted’ targets (Table 1). Of those, predicted residue-residue

Fig 4. Case study of regular target T0769. (A) Results for the low-resolution topology search. Each black dot represents one sampled model. The NMR
structure is shown in red. The green dots are the cluster medoids selected after the topology search. (B) Most accurate model after the topology search
(rainbow) superimposed with the NMR structure (grey). (C) Results for high-resolution refinement and loop construction. Each black dot stands for one
sampled model. The NMR structure is shown in red. The green dots are the cluster medoids selected after the high-resolution refinement. (D) Most accurate
model after the high-resolution refinement (rainbow) superimposed with the NMR structure (grey). (E) Development of the GDT_TS of the most accurate
model over the course of the pipeline. (F) Most accurate model after the molecular dynamics refinement (rainbow) superimposed with the NMR structure
(grey).

doi:10.1371/journal.pone.0152517.g004
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contacts (TP) and only correct residue-residue contacts (TC) were provided for all twelve assis-
ted targets. NMR-NOE data (TS) was provided for eight assisted targets, and MS-XL data was
provided for one assisted target (TX). To evaluate the impact of different kinds of experimental
data on the sampling accuracy of the low-resolution topology search module, we compared the
average GDT_TS value of the ten most accurate models (μ10) for each restraint type and pro-
tein target. The comparison is based on ten models instead of one model to account for the ran-
domness of the sampling. The impact of limited experimental data on model discrimination
was evaluated by comparing the achieved enrichments (see Materials and Methods).

For the predicted residue-residue contacts (TP), which also include incorrect residue-resi-
due contacts, only minor improvements in sampling accuracy could be observed. Whereas the
average μ10 value over the twelve TP targets was 30% when predicting without residue-residue
contacts, incorporating residue-residue contacts improved the average μ10 value to 33%
(Table 3 and Fig 5A). There was also no beneficial impact on model discrimination. Actually,
the average enrichment value dropped from 1.3 to 1.2 when using predicted residue-residue

Table 3. Protein structure prediction results from limited experimental data.

T0 TP TC TS TX

Target μ10 e μ10 e μ10 e μ10 e μ10 e

T0761 30 0.8 32 0.8 37 0.8 30 1.3 - -

T0763 26 1.3 29 1.1 42 1.0 36 0.9 - -

T0767 24 1.1 27 0.9 29 1.0 25 1.3 26 1.2

T0785 44 1.0 43 1.4 46 0.6 36 1.2 - -

T0794 22 1.1 24 1.5 21 1.5 22 1.1 - -

T0814 10 1.2 19 1.1 23 1.3 17 1.0 - -

T0818 41 2.0 42 1.9 52 2.0 43 1.9 - -

T0831 29 2.0 37 1.8 35 3.5 - - - -

T0832 31 1.1 29 0.4 46 3.0 29 2.7 - -

T0834 24 1.3 24 1.5 25 2.1 - - - -

T0848 24 1.6 35 1.2 36 1.3 - - - -

T0853 50 0.8 49 0.7 60 1.9 - - - -

; 30 1.3 33 1.2 38 1.7 30 1.4 26 1.2

The average GDT_TS values of the ten most accurate models (μ10) and the enrichment (e) are shown for prediction from the primary structure alone (T0),

from predicted residue-residue contacts (TP), only correct residue-residue contacts (TC), NMR-NOE restraints (TS), and MS-XL restraints (TX).

doi:10.1371/journal.pone.0152517.t003

Fig 5. Sampling accuracy andmodel discrimination for 'assisted' targets. (A,B) The average GDT_TS
values of the most accurate models (μ10) and the enrichments are compared for protein structure prediction
without restraints (T0), with predicted residue-residue contacts (TP), only correct residue-residue contacts
(TC), NMR-NOE restraints (TS), and MS-XL restraints (TX).

doi:10.1371/journal.pone.0152517.g005
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contacts. Incorporation of only correct residue-residue contacts (TC), had a more significant
impact on the sampling accuracy, which is demonstrated by an improved average μ10 value of
38%. A similar beneficial impact could be observed on model discrimination, which is demon-
strated by an improved enrichment value of 1.7 (Table 3 and Fig 5B). NMR-NOE restraints
(TS) were only available for eight protein targets. For those eight protein targets, only minor
improvements in sampling accuracy and model discrimination could be observed. The
average μ10 and enrichment values improved from 29% to 30% and from 1.2 to 1.4, when com-
pared to the prediction results without using additional structural information (Table 3 and
Fig 5). MS-XL (TX) was only available for one regular target (T0767) analyzed in this study.
For this protein target, incorporation of MS-XL data also only had a minor impact on the sam-
pling accuracy and model discrimination. The μ10 and enrichment values improved from 24%
to 26% and from 1.1 to 1.2 (Table 3 and Fig 5).

The Low-Resolution Topology Search Fails in Some Instances to
Sample the Correct Topology
In a Monte Carlo Metropolis algorithm, the sampling depends on the scoring because the prob-
ability with which a Monte Carlo step is accepted depends on the score difference to the previ-
ous Monte Carlo step [6]. To further investigate limitations in sampling and scoring, we
relaxed the experimentally determined structures in the BCL::Fold force field. In this process,
small structural perturbations are applied to the experimentally determined structure in order
to find a structurally similar conformation with a more favorable BCL score. For sixteen out of
the twenty benchmark proteins (80% of all targets), the relaxation resulted in structurally simi-
lar conformations (GDT_TS> 70%), which had a favorable BCL score (among the top 20% of
the sampled models). We conclude that these topologies should therefore be selectable through
the BCL scoring function and within the sampling range of BCL::Fold (Fig 6 and S2 Fig). For
T0781, conformations with a GDT_TS greater than 80% exist (Fig 6C) that score as well as our
best scoring de novo sampled conformations during the CASP11 experiment (Fig 6). To further
investigate, why none of the well scoring conformations were sampled, we folded an additional
500,000 conformations for T0781 with additional correct residue-residue contact restraints to
further limit the size of the sampling space. Despite that, it was not possible to sample a confor-
mation with a GDT_TS greater than 25%, which indicates that the sampling algorithm needs
to be revisited. Visual inspection of a clustered representation of the sampled models revealed
that the SSEs in all cluster medoids exhibited a strong bias towards Rossmann-like [42,43] α-β-
α-sandwich topologies (Fig 6B), whereas the experimentally determined structure (PDB entry
4QAN) is categorized as α-β-roll (Fig 6A), according to a CATH [44] search. In a future step,
the sampling of β-strand containing topologies needs to be thoroughly revisited.

For four benchmark targets (T0759, T0771, T0818, and T0831, see S2 Fig), the relaxation of
the experimentally determined structure did not result in conformations with a score as favor-
able as the score of the de novo folded models. Whereas this did not pose any problem for tar-
get T0818 because conformations with favorable score and GDT_TS value> 40% exist (S2
Fig), this could have had detrimental effect on the structure prediction for the other three tar-
gets. The remaining targets are outliers to the statistics the BCL::Fold scoring function is based
on (see Materials and Methods for detail). The scores of the targets T0759 and T0831 (PDB
entries 4Q28 and 4QN1) are heavily penalized for their large radius of gyration–the spatial
extent of the proteins’ tertiary structures with respect to their sequence lengths [7]. The radius
of gyration score introduces a bias towards globular folds and it will have to be evaluated on a
large benchmark set if turning off this scoring term will have a negative impact on structure
prediction at general. For the remaining target T0771 (PDB entry 4QE0), multiple properties
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of the experimentally determined structure–burial of residues, residue-residue interactions,
SSE packing–scored worse than the de novo predicted models and the scoring function was not
able to identify a native-like conformation. This target represents an outlier to our statistics
over protein structure properties and would have to be complemented with experimental
restraints.

Discussion

Necessary Simplifications in the Topology Search Hinder Protein
Structure Prediction
The vast size of the conformational space does not allow for exhaustive sampling of all possible
conformations of a protein's chain. BCL::Fold reduces the complexity of the search space by
assembling the protein's tertiary structure from idealized SSEs and only allowing for limited
deviations from the idealized dihedral angles. Although this approach reportedly worked well
for α-helical proteins5 and, in particular, membrane proteins [45], the protein targets in the
CASP11 benchmark set contained many proteins with a large percentage of β-strand content
(Table 1). Many of those proteins contained strongly bent β-strands, making it impossible for

Fig 6. Limitations in the conformational sampling hinder structure prediction for regular target T0781.
(A) Experimentally determined structure of T0781 (PDB entry 4QAN, grey) superimposed with the same
structure after relaxation with the BCL scoring function (rainbow). (B) Best scoring de novo model predicted
by BCL::Fold. (C) Shown are the BCL score of the models (y-axis) and the GDT_TS of the model relative to
the experimentally determined structure (x-axis). Relaxing the experimentally determined structures in the
BCL::Fold scoring function reveals native-like conformations with a favorable score (red dots). In comparison,
the de novo folded conformations observed during the CASP experiment (black dots) achieve comparable
scores but don’t include conformations, which are structurally similar to the experimentally determined
structure.

doi:10.1371/journal.pone.0152517.g006
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the low-resolution topology search module to sample and select models having the correct
topology (Table 2 and Fig 2). Although BCL::Fold was able to sample models with a GDT_TS
value of at least 40% for seven out of twenty regular targets, only four of those targets had accu-
rate models in a sufficient density to be detectable through clustering (Table 2 and Fig 3). Con-
sequently, future work needs to be focused on the development of efficient algorithms to
assemble the topologies of β-sheet domains and domains significantly deviating from idealized
dihedral angles at general.

The High-Resolution Refinement Protocol Requires Additional
Optimization
Over the course of the protein structure prediction pipeline, a general decay of model accuracy
was observed (Table 2 and Fig 3). During the loop construction and side chain placement step
using Rosetta, the average GDT_TS value of the most accurate models over all twenty regular
targets dropped from 27% to 24% (Table 2 and Fig 3). Only for one regular target (T0765), a
significant improvement in model accuracy could be observed. Those findings are less surpris-
ing since the Rosetta loop construction and refinement step, only applies small-scale perturba-
tions to the start model, and therefore did not further explore the conformational space to
transform a topologically incorrect model into an accurate conformation. Consequently, future
work needs to be focused on the development of more accurate scoring functions to increase
the sampling density of accurate models. A similar observation was made for the atomic-detail
MD refinement step. The average GDT_TS value of the most accurate models over all twenty
regular targets dropped from 20% to 18%. A significant improvement in model accuracy was
only observed for one regular target (T0769), for which the GDT_TS value of the most accurate
model improved from 66% to 77% (Table 2, Fig 3 and Fig 4). However, we cannot necessarily
conclude that MD refinement is unable to recover from inaccurate starting models. Previous
work by the groups of David E. Shaw, Chaok Seok, and J. Andrew McCammon demonstrated
that MD refinement is able to improve the accuracy of a model [46–50]. An evaluation of the
CASP11 refinements through MD also reports some success [51]. Whereas Shaw describes a
successful approach using simulations at least 100 μs long, we employed 50 ns simulations. In
conjunction with the low accuracy of our start models, this could explain why our MD refine-
ment was in most cases unable to significantly improve the accuracy of the model. In upcoming
studies, we will therefore employ longer simulations to allow for sufficient coverage of the con-
formational space. Additional influence factors originate in the employed force field, which
will have to be investigated in future studies.

Sampling Problems Could Not Be Overcome through Limited
Experimental Data
Incorporation correct residue-residue contacts (TC) into the scoring function improved the
average μ10 values for the twelve 'assisted' targets from 32% to 40% (Table 3 and Fig 5A). Statis-
tically significant improvements in sampling accuracy were only observed for the six targets
T0763, T0814, T0818, T0832, T0848, and T0853, for which an average improvement of 13%
was observed. For the remaining targets, only minor improvements in sampling accuracy were
observed, indicating that a conformation with high structural similarity to the experimentally
determined structure is not part of the sampling space. The remaining twelve targets, for which
no significant improvement could be observed, were either large or had contained a large num-
ber of β-strands. Expectedly, improvements in sampling accuracy and model discrimination by
using NMR-NOE restraints and predicted residue-residue contact restraints were less pro-
nounced, because those restraint sets also contained incorrect distance restraints. The
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NMR-NOE restraints were simulated and incorrect restraints were added purposefully by the
CASP organizers (see Materials and Methods). Exemplary are the targets T0818 and T0832 for
which incorporation of correct residue-residue contacts resulted in an improvement of the μ10
values from 41% and 31% to 52% and 46%, whereas incorporation of NMR-NOE and pre-
dicted residue-residue contact restraints did not result in any improvement (Table 3 and Fig
5A). Consequently, future work needs to be also focused on developing methods to properly
handle incorrect experimental data.

Supporting Information
S1 Fig. No dependence of the enrichment on secondary structure content or contact order.
No correlation between the enrichment and the percentage of α-helices (A), β-strands (B), or
contact order (C) could be observed. In each case, the absolute value of the R-value was less
than 0.1.
(PDF)

S2 Fig. Score-accuracy correlations of de novo folded models and relaxed experimentally
determined structures. Shown are the BCL score of the models (y-axis) and the GDT_TS of
the models relative to the experimentally determined structure (x-axis). De novo folded models
are depicted as black dots and models sampled through relaxation of the experimentally deter-
mined structure are shows as red dots.
(PDF)

S1 Protocol. Protein structure prediction protocol. The following protocol requires an instal-
lation of the BioChemical Library (BCL), Rosetta, and R with the cluster package. The BCL
license can be obtained at www.meilerlab.org/bclcommons. The Rosetta license can be
obtained at www.rosettacommons.org.
(PDF)
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