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ABSTRACT: Incorporating experimental restraints is a
powerful method of increasing accuracy in computational
protein small molecule docking simulations. Different
algorithms integrate distinct forms of biochemical data during
the docking and/or scoring stages. These so-called hybrid
methods make use of receptor-based information such as
nuclear magnetic resonance (NMR) restraints or small
molecule-based information such as structure−activity rela-
tionships (SARs). A third class of methods directly interrogates contacts between the protein receptor and the small molecule.
This work reviews the current state of using such restraints in docking simulations, evaluates their feasibility across broad systems,
and identifies potential areas of algorithm development.
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■ PROTEIN−SMALL MOLECULE DOCKING AND
STRUCTURE-BASED DRUG DISCOVERY

Computational protein−small molecule docking is an impor-
tant step in the pipeline for structure-based design of small
molecule drugs. Successful prediction of binding position is
necessary to delineate critical interactions for improving
selectivity and/or efficacy. Popular docking algorithms such
as AutoDOCK,1 DOCK,2 GLIDE,3 GOLD,4 and RosettaLi-
gand5 have diverse methods for representing, sampling, and
scoring the molecular interface. These techniques, along with
structure-based virtual screening, have aided advances in drug
hit discovery and lead optimization.6

Community assessments of docking software have generally
displayed success in recovering near-native binding poses. Davis
et al. found that accurate binding poses were found for all
targets in a GlaxoSmithKline compound collection, but the
overall success rate varied dramatically among systems.
Furthermore, no algorithm consistently outperformed the
others across all systems.7 The CSAR 2012 benchmark
demonstrated features such as protein structure minimization,
histidine tautomeric states correction, pregenerated small
molecule conformations, native small molecule training, and
substructure based restraints correlated positively with docking
success. However, binding affinity prediction and relative
ranking of active small molecules remains the most challenging
aspect in the field and during this experiment in particular.8

A common theme across docking assessments was the
benefit afforded by restraints derived from experimental
data.7−10 The potential for such hybrid/integrative methods
has already been reported for protein structure prediction,
which benefits from leveraging nonatomic resolution structural
biology methods such as cryo-electron microscopy11 or
electron paramagnetic resonance.12 Hybrid methods for small

molecule docking can be categorized by data type and by
integration point. Experimental information can be classified as
receptor structure-based, small molecule-based, or interface-
based. Although the same experimental methods may be used
in all three, only interface-based measurements directly
identifies a protein-small molecule interaction. Data derived
restraints can be incorporated as part of the sampling and/or
scoring process.

■ THREE TYPES OF RESTRAINTS AND IMPACTS ON
DOCKING ACCURACY

In order to demonstrate the different power among the
restraint types, a simulated restrained docking benchmark was
conducted using RosettaLigand5 on the PDBBind Core Set.13

The PDBBind Core Set is a collection of 65 high affinity
protein−small molecule complexes. This subset of the
PDBBind database has been previously used for assessing
docking accuracy.9 Receptor-based restraints were represented
by restraining three randomly chosen binding pocket residues
contact any small molecule heavy atom. Similarly, small
molecule restraints promoted contacts for three small molecule
heavy atoms. Interface data were simulated by restraining three
randomly chosen pairs of interacting atoms between the
receptor and the small molecule. A contact was defined as an
interatomic distance less than 4 Å, which includes most
commonly observed molecular interactions.14 For each test, the
small molecule was initially subject to a random reorientation
and translation within a 5 Å sphere. An additional test was
conducted with minimal initial perturbation as a representation
of using the binding mode of a similar small molecule as a guide
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to initial placement. A set of 2500 docking trajectories were
completed for each protein−small molecule test case under
each restraint condition. The models were analyzed for
percentage of native-like small molecule binding modes using
a 2.0 Å RMSD cutoff.
Figure 1 shows the distribution of sampling success rates

across test systems for each of the restraint conditions. The

largest improvements are seen in docking with interface based
restraints and in using molecular similarity to restrict the
starting position. This makes intuitive sense as both restrict the
small molecule rotational orientation in additional to its
translational location in the binding pocket. Reinforcing specific
interatomic distances also restricts the small molecule
conformational flexibility. The applicability of molecular
similarity as a docking restraint depends on similar binding
exhibited by similar small molecules, a question explored later
in this review.
Table 1 shows some common types of experimental

information in addition to examples of programs that makes
use of each type of restraint. Referenced methods are discussed
in further detail in the following sections.

■ PROTEIN RECEPTOR-BASED DATA FOR DOCKING
Receptor-based, also referred to as structure-based, data are
derived from observed changes or effects on the protein alone.
Protein structures in the absence of (apo) or in complex with
the small molecule (holo) determined via X-ray crystallography
are the most straightforward form of structure-based data. Small
molecules can be directly docked into receptor crystal
structures or, if such structures are unavailable, into homology
models. Docking into holo crystal structures is generally more
accurate than docking into apo crystal structures or
comparative models.15 In testing a nitroreductase protein−-
small molecule target from CASP 11, Huwe et al. found few
dockings to comparative model structures that were superior to
docking to the experimental crystal structure. However, the
comparative model docking managed to capture specific
contacts 72.7% of the time.16 Bordogna et al. found a
Spearman’s correlation coefficient of 0.66 between RMSD
accuracy of the comparative model and the accuracy of the
docking simulation for a diverse test set.17 In high-throughput

docking, or virtual screening, applications, comparative models
are capable of similar enrichment rates as their crystal structure
template counterparts.18,19 A common theme across the
assessments is that traditional measures of comparative
modeling ease, such as sequence similarity between template
and target, does not correlate with subsequent docking success.
The success rate for docking into homology models can be
improved by up to 70% by using holo experimental templates
crystallized with small molecules of similar chemotypes.20

Careful validation of the input crystal structure, particularly in
regards to proper orientation and placement of the small
molecule, should be performed prior to using the structure in
computational drug discovery efforts. Any modifications to the
target protein in the crystallization process, including bio-
logically irrelevant mutations or inserted constructs, should also
be considered.21

Receptor structures may also be derived from nuclear
magnetic resonance (NMR) spectroscopy. An ensemble of
conformations is generally provided to capture the flexibility
observed in structures obtained by NMR spectroscopy.
Alternatively, NMR spectroscopy may be utilized to obtain
information on protein−small molecule interface contacts.
Chemical shift perturbations22 are observed for specific residues
upon small molecule binding, while intraprotein Nuclear
Overhauser Effects (NOEs)23−25 reflect structural changes
within the protein. Distance restraints derived from these two
sources are based on the assumption that changes are due to
interactions with the small molecule. Protein-focused methods
can help define the receptor binding pocket but do not
necessarily give information on the small molecule binding
mode. This type of information generally translate to a restraint
favoring small molecule positons that are within a certain
distance of the contact residue.26 Orts et al. demonstrated the
use of protein-mediated NOE data for two competitively
binding small molecules as a postdocking scoring filter that can
improve accuracy by 2 orders of magnitude.23 Onila et al.

Figure 1. Boxplots of simulated restrained docking sampling efficiency.
Boxplots show distribution of percent native-like binding modes
observed across 65 PDBBind Core Set test cases.

Table 1. Receptor-Based (Blue), Small Molecule-Based
(Red), and Interface-Based (Green) Experimental Dataa

aExample programs for particular methods are given in parentheses.
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extended this method to directly use NMR data during docking
by simultaneously optimizing poses for both small molecules,
which improved docking in a test set of weakly bound cAMP-
dependent protein kinase complexes. However, the results were
highly dependent on obtaining proper orientation of the
protein side chains.24 Cala et al. reviews further experimental
details for NMR characterization of protein-small molecule
contacts.26

Other methods for localizing small molecule binding site
interactions include hydrogen/deuterium exchange mass
spectrometry (HDX-MS) and isothermal titration calorimetry
(ITC) used in conjunction with mutagenesis. HDX-MS relies
on the different exchange rates for exposed versus buried amide
hydrogen atoms to identify protein residues covered up by
small molecule binders.27 Mouchlis et al. used HDX-MS on
protein backbone amides in conjunction with docking to
determine binding modes of phospholipase A2 inhibitors.

28 ITC
is used to measure the thermodynamic components of binding
affinity: enthalpy and entropy. Structural information is inferred
from binding affinity changes following protein mutagenesis or
small molecule modification. It is generally assumed that such
changes is due to the impact of the alteration on small molecule
binding.29 To quantify the reliability of using binding affinity
changes from mutagenesis experiments for binding site
localization, the Platinum Database30 of single mutants is
examined to see if affinity change alone is feasible as a binary
predictor of binding distance. The Platinum Database is a
manually curated collection of 1000 mutation−structure pairs
for assessing the impact of mutations on small molecule
binding. Figure 2 shows affinity change measured by relative

folds as a weak classifier (area under curve = 0.647) for distance
to small molecule. This is not surprising as there are often
allosteric effects that explain differential binding to mutant
receptors. Interface-based experimental techniques such as a
double mutant cycle or cross-linking may be better ways to
confirm a direct interaction. This is particularly true when
mutational changes are measured in terms of biological
response instead of binding affinities, for which change may
be due to a direct impact on binding or due to downstream
structural changes.31,32

One important component of receptor-based information is
the use of ensemble methods to account for receptor flexibility.
Rueda et al. demonstrated improvement of cross-docking
results using binding site ensembles to represent protein
flexibility.33 In particular, ensembles of two or more proteins,
enhanced for proteins cocrystallized with chemically similar
small molecules, performed better on average than single
docking or randomly enumerated ensembles.34 These con-
formational ensembles can also be derived computationally
using the relaxed complex scheme (RCS), a series of molecular
dynamics simulations to pregenerate low energy conforma-
tions.35 Experimental data can then filter the conformations to
avoid docking efficiency decrease stemming from having a large
number of ensembles structures.36 Sinko et al. and Feixas et al.
further discuss RCS and other experimental methods to
account for protein flexibility in drug design applications.37,38

One missing area is ensemble methods designed to work
with protein mutants rather than just protein conformers.
Developing such an algorithm would allow the use of receptor-
based SAR data.

■ SMALL MOLECULE-BASED DATA FOR DOCKING
Small molecule-based information takes advantage of binding
data through quantitative structure−activity relationships
(QSARs). QSAR is traditionally part of virtual screening
applications when no receptor information is available. These
models generally make use of 2D small molecule property
descriptors or 3D small molecule shape fitting without
constructing a receptor model. Certain docking algorithms
can incorporate comparisons of known small molecule binders
in generating putative binding modes. SABRE is a method that
generates a consensus molecular shape density function from
multiple bioactive small molecules. Candidate molecules are
then shape fitted using chemical substructures as opposed to
the entire molecule at once.39 Adherence to experimental SAR
can also be used as a filtering step, though this is tricky as
scoring functions generally do not rank order compounds well.
DoMCoSAR is a docking algorithm that selects the most
commonly observed binding modes and utilizes correlation
with SAR to guide final model selection.40 Small molecule
conformational shape fitting can also be achieved with transfer
NOE as demonstrated in the design of a flexible macrocyclic
inhibitor.41

Small molecule-based pharmacophore models are an
extension of molecular shape fitting by identifying chemical
commonalities among binders of a given receptor. Known
ligand binders of a receptor are aligned as flexible conformers
and common features are identified in 3D space to identify the
pharmacophore. This approach can also be performed with
protein side chains to create receptor side pharmacophores.42

One such method PharmDock converts the receptor and small
molecule to hydrogen bonding and hydrophobic pharmaco-
phores before using an alignment algorithm to match pairs. On
a test of the PDBBind Core Set, PharmDock identified a native-
like top model 56% of the time when native conformations
were used but only 37% when using Omega generated
conformers, signifying the importance of input pharmacophore
conformations.43 Pharmacophores can be generated in
combination with molecular dynamics to generate an ensemble
of binding pocket models as shown in a development study of
small molecules for a highly flexible sulfotransferase binding
pocket.44 Yang et al. further discuss both ligand- and structure-
based pharmacophore modeling along with potential challenges

Figure 2. ROC curve using single mutant small molecule affinity fold
change as binary classifier for whether mutated residue interacts with
small molecule (distance <5 Å). The calculated area under the curve is
shown with 1.0 being a perfect classifier.
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such as data set construction, molecular alignment, and feature
selection.42 Use of SARs and multiple active small molecules in
docking simulations is an exciting area of research. In particular,
activity cliffs, highly similar compounds with orders-of-
magnitude differences in potency, provide powerful SAR
information. New methodologies that utilize the experimental
knowledge provided by SARs around activity cliffs can guide
the creation of additional structural analogues.45 The current
release of the ChEMBL database contains over 13 million
activities recorded against over 10 000 targets.46 Furthermore,
there are system specific small molecule SAR databases for
common drug discovery targets such as GLASS for GPCRs47

and KLIFS for kinases.48 One potential way to incorporate this
data is to use an ensemble docking method that can
simultaneously optimize multiple protein−small molecule
complexes and correlate their calculated scores. MLSD is an
extension of AutoDock4 that allows the simultaneous
optimization of multiple small molecule fragments, though it
is restricted to molecules that concurrently bind to the same
target.49 Mass spectrometry of protein unfolding can also be
used to examine multiple small molecule bindings and their
combined interactions on protein stability in the gas phase,
though further methods are necessary to translate this to
binding modes.50

In a reverse modality, small molecule information can also be
used to generate distance-dependent pair potentials for protein
comparative modeling. The MOBILE program docks small
molecules into a starting ensemble average of homology
models, and then generates restraints for subsequent rounds of
model refinement. When used in combination with MOD-
ELLER, MOBILE produced native-like binding pocket geo-
metries in 70% of test cases, improving results in 60% of cases
compared to restraint free comparative modeling.51

■ INTERFACE-BASED DATA FOR DOCKING
Protein−small molecule interactions are the most powerful
combination of the protein and small molecule information as
they can identify specific contact points that can be used in
determining both location and orientation. In testing small
molecule docking into G-protein coupled receptors, Nguyen et
al. demonstrated that sampling efficiency can increase by an
order of magnitude for every ten known protein−small
molecule contacts. The gain was even greater when utilizing
more detailed information such as a specific ionic interaction
translated as a 3.0 Å distance restraint.52

A protein−small molecule double mutant cycle analysis
identifies interactions by comparing ITC binding data of a
single protein mutation, a single small molecule functional
group substitution, and both simultaneously. A substantial
nonadditive interaction energy change is evidence for a direct
interaction. A collection of these pairwise interactions can be
used to derive protein-small molecule distance constraints to
incorporate into the energy gradient docking grid. Roisman et
al. probed 100 potential pairwise interactions in an interferon-
receptor complex and identified five significant interactions.
Docking simulations were run until a converged model was
generated satisfying the five restraints.53 Blum et al. utilized
double mutant cycle analysis with a nicotine analogue and an
acetylcholine receptor backbone amide substitution to show a
hydrogen bond interaction.54 Similar success has been obtained
with double mutant cycle alanine scanning for a yeast Ste2p
GPCR55 and with an allosteric binding site on a hM1
muscarinic receptor complex.56 Compared to the traditional

single site-directed mutagenesis method, this approach has the
potential to differentiate the impact on small molecule binding
from disrupting favorable interactions vs protein stability.
Another method of directly determining intermolecular

distance restraints is with protein−small molecule NOEs.
However, this is generally limited by the need to assign
resonances for the protein-small molecule complex. One
alternative that relies on matching only small molecule
resonance assignments was developed by Constantine et al.57

NMR NOE experiments can also be used to derive relative
orientations between two weakly binding, competitive small
molecules. The INPHARMA technique relies on the transfer of
NOEs between the two small molecules and a common
receptor target. This in combination with a crystal structure of
one protein−small molecule complex can be used in
determining the binding of a related small molecule series
without assuming binding in a similar fashion.58

Small molecule similarity is a type of interface restraint based
on the known binding mode between a related small molecule
and the given protein target. The binding mode of the related
molecule can be used as a guide in placement and orientation
during docking simulations. In the 2015 D3R Grand Challenge
involving blinded docking of HSP90 and MAP4K4 binders, the
most successful workflows superpositioned targets onto similar
small molecules instead of sampling large, unrestricted binding
space.59 HybridDock is one approach that augments docking
with molecular similarity by generating possible binding modes
using existing cocrystallized molecules. This significantly
improved both the binding energy correlation and native
binding mode recovery in a CSAR 2013−2014 test.60 LigBEnD
is a similar approach that uses the cocrystallized molecule to
generate an atomic property force field. Scoring models with
this small molecule-based force field correctly predicted 30 out
of 36 compounds in the D3R docking challenge.61 Related
binding pockets may be found even among proteins of distinct
global folds and evolutionary history. An analysis of potential
enzyme drug targets and evolutionarily distant proteins in the
PDB found similar binding pockets with different global folds in
61%, 10%, and 61% of kinases, phosphatases, and proteases,
respectively.62

■ SYSTEM SPECIFIC EXPERIMENTAL DATA CAN
IMPROVE BOTH SAMPLING AND SCORING

Small molecule docking can be divided into two codependent
challenges: sampling and scoring. Efficient sampling requires
the program to rapidly generate near-native binding poses,
while accurate scoring needs the program to distinguish correct
binding interactions from decoys. Algorithms incorporating
system specific data offer improvements to both sampling and
scoring.
Ross et al. demonstrated that a universal scoring function,

trained across a diverse data set, is less accurate than a target-
specific scoring function when applied to a single system. A
score function that captures experimental affinities across the
entire data set has varying accuracy on single protein data
sets.63 Thus, protein target dependence remains a significant
challenge in choosing diverse benchmark targets for scoring
function development, and in selecting a score function for use
in a particular application system. Current approaches to
overcome this bias are to test a multitude of scoring protocols
before selecting one, or to utilize rescoring algorithms such as
NNScore that can be suited to a specific receptor for screening
applications.64 Trained scoring functions such as the random
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forest based SFCscore or the support vector machine based
SVRR may be fitted to a given target by careful choice of
training data and/or descriptors.65,66 One major advantage of
tuned scoring functions is the ability to reproduce experimental
activity data. AutoShim, for example, uses provided IC50
activity data and partial least-squares regression to parametrize
the scoring function. This empirical correction improved
experimental SAR correlation from an all-purpose scoring
function best of 0.32 to 0.5 across a GSK docking set.67

However, care must be taken to avoid overfitting as having the
same protein families in training and validation can produce
unrealistically high prediction accuracy.68

■ MOLECULAR SIMILARITY AS AN INTERFACE TYPE
DOCKING RESTRAINT

One common assumption in small molecule docking and
screening is that chemically similar small molecules bind a given
receptor in similar fashions. The common molecular scaffold is
presumed to make similar interactions with the binding pocket,
while peripheral functional group modifications create different
contacts that explain SARs. Whether or not this assumption
holds up across a broad set of diverse protein-small molecule
complexes is critical in accessing the applicability of molecular
similarity restraints.
Previous analysis of 206 protein−small molecule structure

pairs observed similar small molecule binding modes in 90
percent of related structures. Binding similarity was defined as
having an optimized small molecule shape Tanimoto of greater
than 0.8. The receptors in those cases exhibited very similar
backbone structures with the primary differences due to side
chain conformation or water architecture.69 An examination of
scaffold building pairs found that in 41 out of 297 cases the
binding mode changed upon chemical elaboration of a
scaffold.70

The current work expands the previous surveys through the
2014 version of the PDBBind refined set,71 which contains
3446 structures controlled for protein structure quality,
accurate binding data, small molecule properties, and nonsur-
face interactions.13 Each protein−small molecule cocrystal
structure is paired with experimentally measured Kd, Ki, or
IC50.
Selecting systems with at least two crystal structures

produces 2443 structures across 441 targets. All complexes
within a system were then aligned based on binding pocket
residues within 15 Å of the small molecule. The in-house
BioChemicalLibrary (BCL) software suite, available at http://
www.meilerlab.org/bclcommons, is used to calculate small
molecule properties and make all possible intrasystem pairwise
comparisons. The pairwise normalized RMSD (nRMSD) is
calculated based on the heavy atom RMSD of the largest
common connected substructure and normalized to ten heavy
atoms using a small molecule analog of RMSD-100.72 The
pairwise Tanimoto similarity coefficient is computed as the
number of atoms in the largest common connected
substructure divided by the total number of unique atoms.
All 34 461 pairwise comparisons were then filtered to

eliminate identical small molecule pairs (Tanimoto < 1), trivial
common scaffolds (scaffold heavy atoms ≥ 6), and different
binding pockets (small molecule center distance > 3.0). A large
number of the remaining comparisons were from the HIV-1-
Protease system, which dominates the PDBBind refined set. In
order to avoid biasing the results toward any particular system,
only a randomly chosen small subset of HIV-1-Protease

comparisons are included. Small molecule symmetry was
factored in when calculating nRMSDs for pairs where
symmetrical molecules are flipped. The final analysis included
a total of 7298 comparisons across 366 targets. The median
Tanimoto similarity across the data set was 0.333, and the
median nRMSD of the common scaffold was 1.071 Å.
Figure 3 shows the relationship between the nRMSD and

Tanimoto similarity for all pairwise comparisons. The tabular

breakdown shows an increasing percentage of pairs below 2 Å
nRMSD with increasing Tanimoto similarity. The data set
included 548 pairs where the common substructure is
equivalent in size to the smaller molecule. A small molecule
binding mode change (nRMSD > 2.0 Å) was observed in 52
cases (9.5%), slightly lower than the percent changed based on
volume overlap comparison used by Malhotra and Karanico-
las.70

A Tanimoto similarity of 0.85 is often regarded as a cutoff for
two molecules having similar biological behavior.73 However,
recent studies suggest that different metrics and different
systems will often produce distinct limits.74 The pairwise
comparisons were decomposed as distribution plots in ten bins
of Tanimoto similarity shown in Figure 4. Although the median
nRMSD is below 2.0 Å for Tanimoto values above 0.2, the

Figure 3. Pairwise small molecule scaffold nRMSD vs Tanimoto
similarity. (inset) Number of pairs and percentage under nRMSD
cutoff for each Tanimoto range.

Figure 4. nRMSD distributions for each of ten bins of Tanimoto
similarity. The median of each distribution is shown in black.
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nRMSD distribution continues to shift downward. In particular,
the maximum nRMSD observed decreases significantly.
The distribution appears fairly stable beyond a Tanimoto

value of 0.7, suggesting a small molecule similarity cutoff in this
neighborhood.
This suggests molecular similarity as a simple metric for

determining if docking positioning can rely on known binding
modes, though predictive power may be improved by factoring
additional properties such as potency, size, and lipophilicity.70

■ EXCEPTIONS TO MOLECULAR SIMILARITY
INTERFACE RESTRAINTS

In 11 small molecule pairs, highly similar small molecules
(Tanimoto > 0.7) exhibited significantly different binding
modes (nRMSD > 5.0 Å). In one particular example, a series of
diflunisal derivatives exhibited two opposite orientations when
bound to transthyretin, a protein involved in amyloidogenesis.
The lead compound diflunisal was found to bind in a forward
and a reverse orientation. More interestingly, a meta-difluoro
derivative (Figure 5, left) was found exclusively in the reverse
binding mode while an ortho-difluoro derivative (Figure 5,
right) was found exclusively in the forward binding mode.75

Another counterexample in the data set is the binding of bile
acids, taurocholate and cholate, to Campylobacter jejuni CmeR
regulator protein. The two compounds differ by a distal anionic
group but are found bound in antiparallel orientations as shown
in Figure 6. The two compounds share the same volume of the
binding pocket and is suggested to interact similarly with a

previously identified glycerol binding site. Furthermore, the
pocket is highlighted by a large hydrophobic tunnel with
numerous mini-pockets, suggesting a reason as to why it is
capable of binding diverse small molecules in diverse fashions.76

A number of notable exceptions can be found in literature as
well. Structure-based design of an influenza neuraminidase
inhibitor series showed up to 180° variation in the orientation
of a central five-member ring. Potent analogues were only
found for the congeneric series that bound in the same
orientation with consistent SAR.77 A study of dipeptidyl
peptidase IV inhibitors showed chemically similar small
molecules with different distal aromatic substitutions and
placements bind in distinct orientations. The substituted
phenyl ring made π−π interactions but with distinct residues
in the different cases.78 Another common exception in systems
such as HIV-1-Protease involve inhibitors bound in two
approximately symmetrical orientations.79 Kim et al. discusses
a number of other exceptions, such as dihydrofolate reductase
and cytochrome c peroxidase small molecules, that were
identified through examination of outliers left out when
constructed QSAR data sets. It should be noted that some of
the exceptions involve conformational changes in the distal
parts of the small molecule while the main chemical scaffold
remains aligned.80 It may also be possible in these QSAR data
sets that similar small molecules reside in different
conformations of a flexible protein binding pocket. In such
cases, the small molecule orientations remain constant but the
protein-small molecule contacts change.81

Based on the PDBBind refined set survey, these exceptions
are fairly uncommon. Some features frequently seen in these
exceptions include nearly symmetrical molecules, large binding
pockets allowing multiple orientations, and distal groups
capable of making favorable interactions with different residues
in the binding pocket. Unfortunately, there are no currently
known small molecule or receptor structure factors to
distinguish exceptions from regular binders.
Although a similarity based approach toward docking or

screening with atoms aligned by identity may not work in these
particular cases, there may be remedies using molecular
properties. A docking method utilizing pharmacophores with
properties such as partial charge or hydrogen bond donor/
acceptors can alleviate this problem. Ph4Dock is an example
where atoms are represented as electrical charge centers
without consideration for identity.82 Furthermore, similar
contact residues are often observed in these situations allowing
for productive suggestions of pairwise interaction validation
experiments such as double mutant cycles.

■ CONCLUSION
The introduction of biochemical data in the modeling process
is a strong promoter of protein-small molecule modeling
success and accuracy. Spectroscopic methods such as NMR and
mass spectrometry have been adapted to interrogate receptor−
small molecule interactions. One can expect improvements in
both sampling and scoring when incorporating experimental
contacts or structure activity relationships. Structure activity
relationships derive from energetic changes upon modifications
to either the receptor or the small molecule. An analysis of the
Platinum Database shows that binding affinity changes upon
single residue mutagenesis is a moderate predictor of binding
contacts. Docking improvements are particularly significant
when experimental restraints limit both translational and
rotational modes of the small molecule. Such restraints can

Figure 5. meta-Difluoro diflunisal derivative (left, PDB: 2B9A) and
ortho-difluoro diflunisal derivative (right, PDB: 2F7I) bound to
transthyretin.

Figure 6. Cholate (left, PDB: 3QPS) and taurocholate (right, PDB:
3QQA) bound to CmeR regulator protein.
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be derived from interface-based experiments that identifies
specific protein−small molecule interactions, or by relying on
binding modes of similar small molecules. These methods
would rely on the assumption that similarities in structure
translates to similarities in binding. A pairwise comparison
across the PDBBind Database shows that this is generally true
among congeneric small molecules. Exceptions exist wherein
typically highly symmetric molecules bind in inverted
orientations. These situations may be addressed by further
development of pharmacophore, or molecular property, based
alignment methods. In cases where experimental data is lacking,
computational ensemble methods, such as molecular dynamics,
are presently available to account for protein and small
molecule flexibility. However, there is significant opportunity
to develop methods utilizing structural ensembles of related
proteins and small molecules.
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