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ABSTRACT: ExoU is a 74 kDa cytotoxin that undergoes
substantial conformational changes as part of its function, that
is, it has multiple thermodynamically stable conformations that
interchange depending on its environment. Such flexible
proteins pose unique challenges to structural biology: (1) not
only is it often difficult to determine structures by X-ray
crystallography for all biologically relevant conformations
because of the flat energy landscape (2) but also experimental
conditions can easily perturb the biologically relevant
conformation. The first challenge can be overcome by applying
orthogonal structural biology techniques that are capable of
observing alternative, biologically relevant conformations. The
second challenge can be addressed by determining the
structure in the same biological state with two independent techniques under different experimental conditions. If both
techniques converge to the same structural model, the confidence that an unperturbed biologically relevant conformation is
observed increases. To this end, we determine the structure of the C-terminal domain of the effector protein, ExoU, from data
obtained by electron paramagnetic resonance spectroscopy in conjunction with site-directed spin labeling and in silico de novo
structure determination. Our protocol encompasses a multimodule approach, consisting of low-resolution topology sampling,
clustering, and high-resolution refinement. The resulting model was compared with an ExoU model in complex with its
chaperone SpcU obtained previously by X-ray crystallography. The two models converged to a minimal RMSD100 of 3.2 Å,
providing evidence that the unbound structure of ExoU matches the fold observed in complex with SpcU.

■ INTRODUCTION

ExoU is a 74 kDa cytotoxin encoded by Gram-negative
bacterium Pseudomonas aeruginosa.1−4 Using the type III
secretion system, ExoU is injected directly into eukaryotic
cells, significantly increasing the severity of the infection.5−7

Because of its function, ExoU needs to undergo substantial
conformational changes; that is, depending on interaction
partners and environment, different conformations of the
protein will be thermodynamically most stable. One con-
formation of ExoU, in complex with its chaperone SpcU, has
previously been elucidated through X-ray crystallography
(Protein Data Bank (PDB) entry 3TU3).2 This X-ray-derived
model depicts ExoU as consisting of four domains. The C-
terminal domain is of particular interest because it mediates the
association of ExoU with the membrane,2,8,9 that is, it is
expected to undergo major conformational changes. However,
all three structural models obtained through X-ray crystallog-

raphy (PDB entries 3TU3,2 4AKX,1 and 4QMK8) depict
ExoU’s C-terminal domain as exhibiting the same conforma-
tion, a four-helical bundle. Experiments performed by Gendrin
et al. showed that even the presence of chaperone SpcU does
not occlude the residues involved in lipid binding.1 Through
electron paramagnetic resonance (EPR) spectroscopy, Benson
et al. provided evidence that the presence of the substrate
induces conformational changes in ExoU’s C-terminal
domain.10 Given the expected intrinsic flexibility of this
domain, we set out to (a) confirm that the conformation of
the C-terminal domain observed in the X-ray crystallography-
derived model in complex with its chaperone SpcU is
consistent with structural data observed for ExoU in solution,
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and (b) probe the structural dynamics of this domain. We
chose EPR spectroscopy in conjunction with site-directed spin
labeling (SDSL) in combination with computational de novo
protein folding to approach these questions.
EPR spectroscopy in conjunction with SDSL provides an

alternative approach to probe the structure and dynamics of a
protein. Briefly, SDSL-EPR is typically employed to measure
the distance between two residues. To facilitate that, two
cysteine residues are introduced at the sites of interest into a
cys-less variant of the protein and coupled with S-(1-oxyl-
2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl metha-
nesulfonothioate (MTSL), which carries an unpaired electron.
Through the double electron−electron resonance (DEER)
experiment,11,12 the distance-dependent dipolar interaction of
the two unpaired electrons can be measured and translated into
a distance distribution. Because every measurement requires a
distinct protein double mutant, the structural information
gained from SDSL-EPR experiments is typically too sparse to
unambiguously determine the protein’s tertiary structure.
However, in conjunction with de novo protein structure
prediction methods, SDSL-EPR data could focus the sampling
on conformations that are in agreement with the experimental
data.
The computational protein structure prediction pipeline

employed in this article is based on the de novo method
BCL::Fold,13 which was specifically developed to predict the
tertiary structure of large proteins. To facilitate this objective,
the secondary structure elements (SSEs) of the protein are
predicted using machine learning methods. Conformations of
the predicted SSEs exhibiting idealized dihedral angles are
subsequently arranged in the three-dimensional space by a
Monte Carlo Metropolis (MCM) algorithm. The intermediary
and final models are evaluated using knowledge-based
potentials that assign a pseudoenergy score to each model.14

Although this method has been successful at de novo sampling
the tertiary structure of large proteins, distinguishing between
accurate and inaccurate models based on their pseudoenergy
score alone remains a challenge.15 However, it was demon-
strated that incorporation of limited experimental data
significantly mitigates problems in model discrimination.16−19

The Rosetta method20,21 was used to add atomic detail and
energy-optimize the final models.
In this article, we discuss the structure and dynamics of ExoU

and provide a benchmark evaluating the influence of SDSL-
EPR data on protein structure prediction. In the Results and
Discussion section, we detail the computational protein
structure prediction pipeline, describe the available SDSL-
EPR data, compare the prediction results to those from the X-
ray-derived model of ExoU, and evaluate the influence of
SDSL-EPR data on de novo protein structure prediction. In the
Methods section, we describe the experimental approach used
to obtain the SDSL-EPR data.

■ RESULTS AND DISCUSSION
Here, we report the results of the de novo protein structure
prediction with and without the inclusion of SDSL-EPR data.
The results were evaluated for of sampling accuracy and
discrimination of inaccurate models as described above. We
begin with an analysis of improvements in sampling accuracy
when SDSL-EPR data is incorporated into the protein structure
prediction algorithm. The influence of SDSL-EPR data on the
discrimination of inaccurate models is then considered. This
section starts with an outline of the benchmarking procedure

that was used to evaluate the influence of SDSL-EPR data on de
novo protein structure prediction accuracy. This outline is
followed by sections providing a detailed description of the
protein structure prediction protocol, an analysis of the
available SDSL-EPR data for the C-terminal domain of ExoU,
and a description of the algorithm used to translate the SDSL-
EPR data into structural restraints that are usable by the
prediction algorithm. This section is concluded by an
evaluation of the predicted tertiary structure, its agreement
with the X-ray-derived model and a discussion of its consistency
with the SDSL-EPR data.

Summary of the Available SDSL-EPR Data for the C-
Terminal Domain of ExoU. For the C-terminal domain of
ExoU, seven intradomain SDSL-EPR distance measurements
were available (see Table S1 and Figures S1 and 1B for details).

The X-ray-derived model is in good agreement with the
restraints derived from the SDSL-EPR measurements, as
indicated by an average agreement score of −0.88 (Table S1,
see the following section for details regarding quantifying the
agreement of models with the SDSL-EPR data). Of the seven
restraints, four are between α-helices 23 and 24, one is between
α-helices 22 and 23, one is between α-helix 23 and the loop
region connecting α-helices 24 and 25, and one is between α-
helix 24 and the loop connecting α-helices 24 and 25. As shown
in Figure 1B, the SDSL-EPR restraints well-describe the relative
positions of α-helices 23 and 24.

Summary of the Benchmark Setup To Evaluate the
Influence of SDSL-EPR Data on De Novo Structure
Prediction. The influence of SDSL-EPR data on de novo
protein structure prediction was evaluated by performing two
independent structure prediction runs, one with incorporated
SDSL-EPR data and one in the absence of SDSL-EPR data, for
the C-terminal domain of the effector protein, ExoU. The
protocols for both prediction runs were predominately
identical, only differing in the scoring function that was
extended by a scoring term quantifying the agreement of the
model with the SDSL-EPR data for one prediction run (see the
following sections for details). For each prediction run, about
100 000 low-resolution models and about 50 000 high-

Figure 1. Protein structure prediction pipeline and SDSL-EPR data for
the c-terminal domain of ExoU. (A) De novo protein structure
prediction pipeline for the C-terminal domain of ExoU employed a
hierarchical approach consisting of modules for secondary structure
prediction, low-resolution topology sampling, and high-resolution
refinement. (B) Seven intradomain SDSL-EPR measurements were
available (shown as dashed lines) for the C-terminal domain of ExoU.
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resolution full-atom models were sampled and subsequently
analyzed under the aspects of sampling accuracy and
discrimination of inaccurate models (see the following sections
for details). A previously published X-ray-derived model of
ExoU (PDB entry 3TU3)2 was used as a reference structure for
evaluating the sampling accuracy and model discrimination, the
reported RMSD values are between the sampled models and
the X-ray-derived model of ExoU. However, no information
about the X-ray-derived model was used in the protein
structure prediction protocol.
Protein Structure Prediction Protocol. The protein

structure prediction protocol (see Figure 1A) consisted of two
modules: a module for low-resolution sampling of possible
topologies and a module for the construction of loop regions
and high-resolution refinement of the resulting model. The two
modules were connected through a data aggregation step using
filtering and clustering. The low-resolution topology sampling
was performed iteratively: upon conclusion of the first iteration
of the low-resolution topology sampling, the most favorable
models by pseudoenergy score and agreement with the SDSL-
EPR data (if applicable) were selected as start models for a
second round of optimization using the topology sampling
module.
In the first module (Procedures S1 and S2 for details), low-

resolution topology sampling, the secondary structure of the
protein was predicted using PsiPred22,23 and Jufo9D.24 The
resulting SSEs were subsequently arranged in the three-
dimensional space using the de novo protein structure
prediction algorithm, BCL::Fold.13 BCL::Fold employs an
MCM algorithm to sample the possible topologies arising from
the predicted SSEs. The BCL::Fold prediction consists of six
stages: five assembly stages and one refinement stage. In each
MC step, a randomly chosen perturbation (mutate) is applied
to the current protein model. The assembly and refinement
stages differed in the mutates applied by the MCM algorithm.
Whereas the mutates during the assemble stages apply
topology-changing perturbations like large-scale translations
of SSEs or swapping of SSEs, the mutates during the refinement
stage apply only small-scale perturbations like rotating helices
around their main axes. After each application of a mutate, the
resulting protein model is evaluated using a scoring function, E.
Scoring function E is the weighted sum of various knowledge-
based scoring terms Ei and assigns a pseudoenergy score s to a
protein model m by computing s = E(m) = ∑iwi·Ei(m).

14 The
scoring terms, Ei, each evaluate different properties of the
protein model such as steric interferences, residue−residue
interactions, SSE−SSE packing, or residue exposure.14 Depend-
ing on the score difference between the current model and last
accepted model, a Metropolis criterion either accepts or rejects
the new model.13,14 The Metropolis criterion in conjunction
with simulated annealing is used to prevent sampling
trajectories from getting trapped in local pseudoenergy minima.
Subsequently, the MCM algorithm resumes with the latest
accepted model. The MCM optimization of each assembly and
refinement stages lasted for a maximum of 4000 MC steps with
the optimization terminating early if no improvement in the
pseudoenergy score was achieved for 800 MC steps in a row. In
total, this module resulted in 50 000 models.
Upon conclusion of the first topology sampling module, the

models were ranked according to their pseudoenergy score.
The best 10% of the models (∼10 000 models) were selected
for clustering using a k-means implementation in R,25 with the
root-mean-square distance (RMSD) between the backbone Cα-

coordinates being the metric for quantifying the dissimilarity
between models (see Procedure S3 for details). The number of
clusters was dynamically adjusted to maximize the average
Silhouette width,26,27 which quantifies how tight the grouping
of the data points in each cluster is. Briefly, the Silhouette of a
data point n is computed as s(n) = (b(n) − a(n))/
max{a(n),b(n)}, where a(n) is the average dissimilarity
between n and all other data points in the same cluster and
b(n) is the lowest average dissimilarity between n and a data
point in any other cluster. The average Silhouette width of the
clustering is computed accordingly as ∑n=1

k s(n)/k. The
Silhouette width ranges from −1 to 1 with a higher value
indicating a good matching of the data elements to their
respective clusters and poor matching to other clusters,
therefore indicating that clustering represents the underlying
data well. For structure prediction with and without SDSL-EPR
data, the clustering resulted in four and seven clusters,
respectively. The cluster medoids and the most favorable
model by the pseudoenergy score were chosen for another
round of optimization using the topology sampling module.
The protocol of this optimization matched the protocol
described above but used the selected models as start models.
Upon conclusion of the second round of optimization, the
same clustering protocol was applied and resulted in three and
seven clusters, respectively. The cluster medoids and the most
favorable model by the pseudoenergy score were selected as
start models for the second module, that is, the construction of
loop regions and high-resolution refinement of the models
using Rosetta.
In the second module (see Procedure S4 for details), the

Rosetta software suite21,28 was used to construct loop regions,
add side-chain coordinates, and perform a high-resolution
refinement of the provided protein models. The cyclic
coordinate descent (CCD) algorithm29 was employed for
construction of loop regions, and the SDSL-EPR data was
incorporated into CCD and the subsequent refinement using
the motion-on-a-cone (CONE) model30 (see the following
sections for details) following previously published protocols.20

The weight of the score quantifying the agreement of the
model with the SDSL-EPR data was set to 40 to ensure that the
score accounts for approximately 40% of the total pseudoe-
nergy score. For each of the provided start models, 500 full-
atom models were sampled using this protocol, resulting in
about 20 000 models.

Incorporating SDSL-EPR Data into Computational
Protein Structure Prediction. To use SDSL-EPR spectros-
copy for distance measurements in a protein, a spin label
carrying a free electron needs to be introduced at the two sites
of interest. The distance between the two spin-labeling sites is
then determined indirectly by measuring the dipolar interaction
between the two free electrons, which is inversely proportional
to their cubed distance.11,12 The indirect nature of this
measurement poses challenges for using the observed data in
a protein structure prediction algorithm. First, even if the
backbone of the protein is inflexible, the proteins in the sample
for the measurement will exhibit different conformations of the
spin label, resulting in a distribution of distances rather than
one observed distance. Second, depending on the type of spin
label and its conformation, the distance between the free
electron and the backbone of the spin-labeled residue can be
rather large, adding uncertainty to the measurement. For
example, for spin label MTSL, the Euclidean distance between
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the Cβ-atom of the spin-labeled residue and the spin label’s free
electron can be up to 8.5 Å.30

To use the distances measured in the SDSL-EPR experiment
within a protein structure prediction algorithm, a function to
quantify the agreement between the experimental data and a
protein model needs to be defined. This function needs to
capture both aforementioned properties of the SDSL-EPR
measurement, the flexibility of the spin label and the
indirectness of the measurement. Previously, different ap-
proaches to define such a function have been published. The
motion-on-a-cone (CONE) model18,30 uses a knowledge-based
approach to account for these factors. This implicit approach
provides a rapid way to estimate the probability of observing a
certain Cβ−Cβ distance (DBB) given a measured spin−spin
distance (DSL). The agreement score based on the CONE
model is defined on the basis of the difference between DBB and

DSL, which can range from −12 to 12 Å. The value of the
scoring function ranges from 0.0, which means no agreement,
to −1.0, which means best possible agreement. This approach
has been successfully used for de novo prediction of membrane
proteins18 and soluble proteins that exist in multiple relevant
states.17

Because of its significantly faster computation time, we
employed the CONE model30 to translate the measured spin−
spin distances into structural restraints for the de novo protein
structure prediction algorithm. For the structure prediction
algorithm, the weight of the CONE-based score quantifying the
agreement of the protein model with the SDSL-EPR data was
set to 40, which ensured that this score accounted for about
40% of the total score, a contribution percentage for limited
experimental data that provided the best prediction results in
previous studies.15 Additionally, we added a quadratic potential

Figure 2. Prediction results for the C-terminal domain of ExoU. (A) Comparison of the sampling densities between prediction with (red) and
without (black) SDSL-EPR data. Results are shown for the first (solid line) and second (dashed line) iterations of the low-resolution topology
sampling. (B) Sampled models are shown as black dots with their pseudoenergy score and RMSD100 relative to the X-ray-derived model. (C) Most
accurate model predicted (blue) superimposed with the X-ray-derived model (purple, PDB entry 3TU3) from top and side views. (D) Alternative
model (beige) predicted by the prediction pipeline superimposed with the X-ray-derived model (purple, PDB entry 3TU3).
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function to penalize the models with DSL−DBB values outside of
the range of the CONE model.18

De Novo Prediction Results Confirm the Correctness
of the X-ray-Derived Model. The X-ray crystallography
model of the ExoU/SpcU (PDB entry 3TU3)2 structure is of
high quality (resolution = 1.9 Å, Rfree = 0.225, Rwork = 0.191).
The C-terminal domain makes few crystal lattice contacts that
are overall unlikely to perturb its confirmation: V57, L55, and
G82 of SpcU appear to form a hydrophobic pocket for α-helix
23 and SpcU S51 and R83 potentially hydrogen-bond to ExoU
residues N657 and E636, respectively. Otherwise, SpcU does
not appear to influence the structure of the C-terminal four-
helix bundle. Hence, we started with the hypothesis that de
novo structure prediction in conjunction with SDSL-EPR will
ultimately be consistent with this conformation. The de novo
prediction of the C-terminal domain of ExoU resulted in two
dissimilar topologies (Figure 2B,C). Whereas one topology is
represented by models exhibiting a structural dissimilarity to
the X-ray-derived model as low as 3.2 Å, the other topology is
structurally very dissimilar with an RMSD100 of about 12 Å
relative to the X-ray-derived model. Notably, both topologies
have comparable agreements with the SDSL-EPR data. The
approach described in this study is orthogonal to the
procedures used for obtaining the X-ray-derived model.
Although there is not enough experimental data to rule out
either of the two topologies, the partial convergence of the de
novo method on the topology of the X-ray-derived model
reassures its correctness. The topology that is structurally
dissimilar to the X-ray-derived model arrives at a more
favorable pseudoenergy score than the structurally similar
topology (Figure 2B,C). However, this does not necessarily
mean that the alternative topology is energetically more stable
but could also be an artifact caused by inaccuracies of the free
energy approximations. Artifacts like this have been observed in
previous studies and might be eliminated by obtaining
additional distance measurements.17,18

We were also interested in examining the experimental
bimodal distance distributions observed for A629−A645 and
Q649−S672 (see Figure S1 for details). To evaluate the
agreement of the X-ray-derived model of ExoU with the
determined distance distributions, we performed explicit
simulation of the distance distribution for the double mutant
A629C−A645C, as described in the Methods section. The
double mutant Q649C−S672C was not evaluated because
residue S672 was not resolved in the X-ray-derived model and
modeling the missing coordinates would introduce additional
bias. For double mutant A629−A645, explicit simulation of the
spin labels did not result in a bimodal distribution but in a
distinct peak at around 25.5 Å (Figure S2). For comparison,
EPR spectroscopy determined two peaks: 19.3 ± 1.6 and 24.1
± 1.9 Å (Figure S1). Taking the accuracy limit of the X-ray-
derived model and the fixed backbone during the explicit
simulation into account, we conclude that the X-ray-derived

model is in agreement with the measured mean distance of 24.1
Å. Additional simulations were performed for the remaining
double mutants that had both spin-labeling sites resolved in the
X-ray-derived model. The simulated peaks matched the
experimentally determined peaks well (Figure S2) given the
accuracy limit of the X-ray-derived model and the fixed
backbone during the simulation. For one double mutant,
E636−N657, the simulation resulted in two peaks: one peak at
around 18.5 Å, which agrees with the experimentally
determined peak at 20.0 ± 3.6 Å, and one peak at around
13.5 Å, which would be too short to detect through the DEER
experiment.

Incorporating SDSL-EPR Data Increases the Proba-
bility of Sampling Accurate Models. De novo sampling of
conformations through an MCM algorithm is a statistical
process. The similarity of the sampled models to the X-ray-
derived model corresponds to a normal distribution. To
evaluate if incorporation of SDSL-EPR data increases the
probability of sampling accurate models, the shifts between the
distributions resulting from de novo sampling with and without
SDSL-EPR data can be compared. However, the more
important aspect is the accuracy of the most accurate models
alongside the percentage of accurate models. To quantify
improvements in sampling accuracy, we compared the average
RMSD100 values of the 10 most accurate models, μ10, for the
two prediction runs. We chose to compare the RMSD100
averages over 10 models instead of 1 to mitigate the effect of
statistical outliers. Moreover, the percentage of models with an
RSDM100 of less than 5 Å relative to the X-ray-derived model,
τ5, was compared. In addition, we also investigated whether
incorporation of SDSL-EPR data results in increased clustering
of the sampled models, as would be expected because the
incorporated restraints should exclude conformations that
significantly violate the EPR-derived restraints.
The results of the iterative protocol clearly demonstrate that

incorporation of even a small number of SDSL-EPR distance
restraints significantly increases the probability of sampling
accurate models. Additionally, the most accurate models
sampled arrive at an accuracy not observed for de novo protein
structure prediction in the absence of SDSL-EPR data. This is
demonstrated by changes of the μ10 values, which improve from
6.0 to 5.1 Å with the inclusion of the SDSL-EPR restraints for
the first iteration of the low-resolution topology sampling
(Figure 2A and Table 1). The τ5 values for the first iteration
were too low to be compared in a meaningful way. Another
notable effect of incorporating the SDSL-EPR data was an
increased clustering of the sampled models, which is likely
caused by the exclusion of models that are not in agreement
with the experimental data. The improved clustering is
demonstrated by improvements of the average Silhouette
width (see the Methods section for details), which was 0.21 for
the first iteration of low-resolution topology sampling without
the SDSL-EPR data and improved to 0.57 when experimental

Table 1. Prediction Results for the C-Terminal Domain of ExoU with and without the SDSL-EPR Dataa

low-resolution I low-resolution II high resolution

setup μ10 [Å] τ5 [%] e μ10 [Å] τ5 [%] e μ10 [Å] τ5 [%] e

no data 6.0 0.0 0.6 4.9 <0.1 0.1 4.6 <0.1 0.1
SDSL-EPR data 5.1 <0.1 2.8 3.9 1.2 2.5 3.2 0.7 1.2

aIncorporation of SDSL-EPR data results in improved sampling accuracy and model discrimination, as shown by improvements in the average
RMSD100 over the 10 most accurate models sampled (μ10), in the percentage of models with an RMSD100 less than 5 Å relative to the X-ray-
derived model (τ5), and in the enrichment (e).
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data was included. Because of improved clustering, a more
accurate set of models could be selected for the second
iteration of the low-resolution topology when including the
SDSL-EPR data. This is demonstrated by more favorable μ10
and τ5 values after the second iteration, 3.9 Å and 1.2% as
compared to 4.9 Å and less than 0.1%, respectively, when no
experimental data was used. This pattern propagated to the
high-resolution refinement step. For prediction with the SDSL-
EPR data, the μ10 and τ5 values arrived at 3.2 Å and 0.7%,
whereas they were 4.6 Å and less than 0.1% for the prediction
without using experimental data (Table 1).
In conclusion, incorporation of limited experimental data

from SDSL-EPR spectroscopy into de novo protein structure
prediction results in excluding models that violate the restraints.
Although the experimental data in this test case are too sparse
to unambiguously determine the tertiary structure of the C-
terminal domain of ExoU, the probability of sampling accurate
models is significantly improved. This was demonstrated by
improvements of μ10 and τ5 values, as well as improvements of
the average Silhouette width of the clusters, which indicates an
increased clustering of the sampled models.
Incorporation of the SDSL-EPR Data Improves

Discrimination of Inaccurate Models. Distinguishing
between accurate and inaccurate models resulting from de
novo protein structure prediction is typically hindered by the
reduced resolution of the sampled conformations that result
from the relatively coarse-grained approaches used to
approximate a model’s free energy. This was demonstrated by
the prediction results in the absence of SDSL-EPR data.
Although moderately accurate models with an RMSD100 of 4.7
Å relative to the X-ray-derived model could be sampled during
the first iteration of the low-resolution topology search, the
employed scoring function was unable to correctly distinguish
between accurate and inaccurate models, as indicted by an
enrichment value of 0.6 (Table 1). Accurate models were
sampled with low probability, resulting in an accordingly low
density. As a consequence, accurate models could not be
detected through clustering. This was demonstrated by the
Silhouette scores that were 0.21 when the SDSL-EPR data were
used and 0.57 otherwise, indicating a broader range of
conformations considered favorable in the absence of SDSL-
EPR data. In general, incorporation of the SDSL-EPR data
significantly improved the scoring function’s ability to
distinguish between accurate and inaccurate models, which
can be shown by comparing the enrichment values that arrived
at 0.6, 0.1, and 0.1 for the two iterations of the low-resolution
topology search and the high-resolution refinement in the
absence of experimental data, respectively, but upon incorpo-
ration of the SDSL-EPR data improved to 2.8, 2.5, and 1.2,
respectively (Table 1).
Limitations in Conformation Sampling and Model

Discrimination Remain. The most accurate full-atom model
sampled by the presented pipeline arrives at an RMSD100 of
3.2 Å (Figure 2 and Table 1) relative to the X-ray-derived
model (PDB entry 3TU3), which was reported at a resolution
of 1.9 Å. Therefore, the most accurate model sampled is not
within the accuracy limit of the experimentally determined
reference structure. Assuming that the X-ray-derived model
correctly and accurately represents the protein’s major
population in the equilibrium, the most accurate model does
not capture the protein’s tertiary structure at atomic detail. This
may be attributed in part to necessary simplifications when
sampling conformations. Neither the low-resolution topology

sampling nor the high-resolution refinement exhaustively
searches the conformational space, and the most accurate
model sampled could indeed be the most accurate model
possible when using these methods in a de novo approach. For
future studies, it will be worth investigating if this pipeline
should be augmented with molecular dynamics simulations.
Although the discrimination of inaccurate models could be

improved substantially through incorporation of SDSL-EPR
data, as was demonstrated by the improvements of the
enrichment values (Table 1), it is still not possible to reliably
select the most accurate models. The models with the most
favorable score cluster around RMSD100 values between 7 and
13 Å (Figure 2B). However, the difference in pseudoenergy
between the models with the most favorable pseudoenergy and
the models with the most favorable RMSD100 relative to the
X-ray-derived model accounts for less than 15% of the most
favorable score. This indicates that the discrimination problem
could be resolved through additional SDSL-EPR distance
measurements. In this initial study, the C-terminal domain of
ExoU was predicted using only seven EPR-derived restraints,
which in conjunction with the low-resolution translation of
experimental distances into structural restraints is not sufficient
to remove ambiguity from the prediction. Nonetheless,
significant improvements were made even with this modest
set of distance measurements, providing a valuable benchmark
for further studies evaluating the impact of a more
comprehensive set of constraints on de novo structure
prediction.

■ CONCLUSIONS

Using EPR spectroscopy in conjunction with de novo protein
structure prediction provided an orthogonal approach to probe
the structure of ExoU. The prediction converged on a
conformation that is topologically identical and structurally
similar (RMSD100 of 3.2 Å) to the X-ray-derived model in
complex with its chaperone SpcU (PDB entry 3TU3). This
result confirms that the fold of the ExoU C-terminal domain in
solution matches the fold when in complex with its chaperon
SpcU. From a different perspective, we established a protocol to
predict a model of a soluble protein from limited SDSL-EPR
data using a combined approach consisting of BCL::Fold, R,
and Rosetta. This approach can be applied to all soluble
proteins.

■ METHODS

In this section, we detail the experimental methods used to
obtain the SDSL-EPR data and the computational methods to
explicitly simulate EPR-derived distance distributions in silico.
This section is concluded by a description of the quality metrics
used to evaluate the protein structure prediction results.

DEER Spectroscopy and Determination of Distance
Distributions. Four-pulse DEER data were collected on a
Bruker E-580 pulse EPR spectrometer (Bruker Biospin)
operating at Q-band (34 GHz), equipped with an EN5107D2
resonator and a 10 W microwave amplifier. Selected MTSL-
labeled double-cysteine mutants of ExoU were prepared in 20
mM 3-[N-morpholino]propanesulfonic acid, 145 mM NaCl,
pH 7.2, using perdeuterated water and containing 25% (v/v)
perdeuterated glycerol as cryoprotectant. Samples containing a
final protein concentration of approximately 0.1 mM in a
volume of 12 μL were flash-frozen in liquid N2 and immediately
placed in the resonator where sample temperature was
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maintained at 80 K using an Oxford cryostat. Data were
background-corrected and analyzed by model-free Tikhonov
regularization using DeerAnalysis2011.31

Explicit Simulation of EPR-Derived Distance Distribu-
tions. To further evaluate the agreement of the X-ray-derived
model with the SDSL-EPR data, explicit simulation of the spin
label distance distribution was performed for double mutants
that had both spin-labeling sites resolved in the X-ray-derived
model. For the explicit simulation, the endogenous residues at
the spin-labeling sites were replaced with R1A, which is a
cysteine residue spin-labeled with MTSL, using Rosetta’s
application for a fixed backbone design, “fixbb”. The resulting
model was subsequently energy-optimized using Rosetta’s
“relax” application. The relaxation was constrained to the
start coordinates to avoid introducing bias through Rosetta’s
scoring function. Constraining to start coordinates limited
backbone perturbations to less than 0.1 Å. Per double mutant,
1000 independent trajectories were simulated and the spin−
spin distances observed in each trajectory were extracted to
determine the spin−spin distance distribution.
Quantitative Evaluation of the Protein Structure

Prediction Results. The accuracy of the structure prediction
results was evaluated under two aspects: the sampling accuracy,
which is the structural similarity between the sampled models
and the experimentally determined reference structure, and the
discrimination of inaccurate models, which is how well the
employed scoring function could distinguish between the
accurate and inaccurate models. For quantifying the sampling
accuracy, the protein size-normalized RMSD (RMSD100)32

w a s u s e d , w h i c h c a n b e c o m p u t e d a s

=RMSD100 RMSD/ln (l/100) , with RMSD being the
RMSD between the Cα-coordinates of the two structures and
l being the number of residues in the superimposition. To
quantify the model discrimination, the enrichment metric15 was

used, which can be computed as = ×#
#e 10TP

P
. The sets TP

and P are both subsets of the set of all sampled models. Set P
contains the 10% of the models with the lowest RMSD100
relative to the experimentally determined reference structure.
Set TP is computed from sets P and PS, which contains the
10% of the models with the most favorable pseudoenergy score,
as TP = P ∩ PS. Therefore, set TP contains the 10% most
accurate models that are at the same time among the 10% of
the models with the most favorable pseudoenergy score.
Accordingly, the enrichment ranges from 0 to 10 and an
enrichment value of 1.0 indicates that the selection by the
employed scoring function is purely random and discrimination
of inaccurate models does not take place. Enrichment values
greater than 1.0 indicate that the scoring function is able to
distinguish between accurate and inaccurate models, whereas
enrichment values less than 1.0 indicate that the scoring
function is selecting against accurate models. An enrichment
value of 1.0 indicates that 10% of the most accurate models can
be identified by the scoring function.
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