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The strong coupling between secondary and tertiary structure for-
mation in protein folding is neglected in most structure prediction
methods. In this work we investigate the extent to which nonlocal
interactions in predicted tertiary structures can be used to improve
secondary structure prediction. The architecture of a neural network
for secondary structure prediction that utilizes multiple sequence
alignments was extended to accept low-resolution nonlocal tertiary
structure information as an additional input. By using this modified
network, together with tertiary structure information from native
structures, the Q3-prediction accuracy is increased by 7–10% on
average and by up to 35% in individual cases for independent test
data. By using tertiary structure information from models generated
with the ROSETTA de novo tertiary structure prediction method, the
Q3-prediction accuracy is improved by 4–5% on average for small and
medium-sized single-domain proteins. Analysis of proteins with par-
ticularly large improvements in secondary structure prediction using
tertiary structure information provides insight into the feedback from
tertiary to secondary structure.

artificial neural networks � protein folding � ROSETTA � fragment
replacement � CASP

Many approaches for predicting secondary structure from
sequence have been developed (1–13). The PHD program

published by Rost and Sander (14, 15) used multiple sequence–
sequence alignments for the first time. The state-of-the-art PSIPRED
program by Jones (16) uses position-specific scoring matrices
obtained in PSIBLAST searches (17). The most accurate of these
methods achieve a Q3 score between 75% and 80%, where Q3 is the
percentage of amino acids correctly predicted as helix, sheet, or coil
if all amino acids are classified in one of the three groups. Not only
secondary structure but also supersecondary structural elements
such as U-turns or �-hairpins can be predicted from sequence
(18–22). In essentially all previous work, the prediction of the
secondary structure at a given position i is based entirely on a local
sequence window of 5–27 aa centered on the position; sequence
information distant from position i is ignored, although, during
folding, interactions with residues distant along the linear sequence
but close in space are likely to influence the structure at position i.

During the folding process of a protein, a certain fragment first
might adopt a secondary structure preferred by the local sequence
(e.g., an �-helix) and later be transformed to another secondary
structure (e.g., a �-strand) because of nonlocal interactions with a
segment distant along the sequence (Fig. 1). The structures of
peptides corresponding to portions of complete native sequences
have been investigated to identify parts of the sequence that adopt
the native conformation early, as well as parts that undergo
transitions (23, 24). Whereas some peptide fragments adopt stable
conformations similar to those seen in the complete protein (25,
26), other peptides adopt different secondary structure in different
contexts (27–33). As shown by Minor and Kim (34), the same local
11-aa sequence can adopt �-strand or �-helix structure, if inserted
at two different positions in protein G. Also, for prion proteins, it
appears that the same sequence can adopt different tertiary folds
with different secondary structure (35–48). These results support
the idea that the secondary structure in some portions of a protein
sequence depends critically on tertiary interactions (49).

Because of the indeterminacy of local sequence–structure rela-
tionships, the prediction of secondary structure from a local se-
quence window must fail in some cases. Secondary structure
prediction is excellent (with Q3 � 90%) for many proteins but is as
low as Q3 � 50% for some sequences. Usually the mistakes in
secondary structure prediction occur in regions with local se-
quences that do not clearly prefer the formation of �-helix,
�-strand, or coil, where the choice may ultimately be dictated by
quite nonlocal interactions. These nonlocal interactions, which
result from the complex folding process, cannot be reproduced by
a simple neural network, even if the complete sequence is provided
as input. However, given a set of possible tertiary structure models,
a neural network potentially could extract nonlocal information
that in turn could help to predict the secondary structure of such
regions more accurately and with a higher confidence level.

Given the amino acid sequence of a protein, possible tertiary
structure models can be generated by de novo protein structure
prediction methods. The ROSETTA de novo protein structure pre-
diction method (50) has proven to be one of the most successful
approaches. It can make good predictions for a large number of
different folds, as demonstrated during CASP4 and CASP5 [Crit-
ical Assessment of Techniques for Protein Structure Prediction
(51–53)]. The Protein Data Bank is screened for fragments that
have a high primary-sequence homology and a secondary structure
that matches the predicted secondary structure for each three- and
nine-residue fragment of the query sequence. These fragments
sample possible conformations for each local segment of the chain
and are combined by using a Monte Carlo algorithm to generate
possible tertiary structures.

This paper was submitted directly (Track II) to the PNAS office.

Abbreviation: rmsd, rms deviation.

*To whom correspondence should be addressed. E-mail: dabaker@u.washington.edu.

© 2003 by The National Academy of Sciences of the USA

Fig. 1. Twohypothetical foldingpathways showtheformationandsubsequent
transformation of secondary structure. (a) A preformed �-hairpin coming spa-
tially close to a preformed �-helix. To form a three-stranded sheet, the �-helix
needs to transform into a strand. (b) A �-strand distant in sequence coming
spatially close to two helices packing against each other. The �-strand transforms
into an �-helix to form a three-helix bundle.
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In this article, low-resolution 3D information obtained from
ROSETTA models is incorporated into a neural network secondary
structure prediction method and found to decrease the number of
critical mistakes. Going one step further, the improved secondary
structure prediction is shown also to improve the structural models
generated by ROSETTA when used for fragment selection. The
procedure can be viewed as a mimic of the actual folding process:
the secondary structure is formed based on local sequence prefer-
ences and later reevaluated based on the long-range interactions in
frequently sampled tertiary structures.

Methods
Scoring Matrix-Based Secondary Structure Prediction. A previously
described neural network approach for predicting secondary struc-
ture from a single sequence profile of seven amino acid properties
over a window of 39 aa (13) was extended to process position-
specific scoring matrices as additional input parameters. These
matrices can be obtained from PSIBLAST searches (17) and previ-
ously have been shown to be useful for secondary structure
prediction (16). For this purpose, 20 additional input units were
added per position. Thus, the number of input units was 1,053 [(7
� 20) � 39]: the number of hidden neurons in the standard
three-layer feed-forward network was optimized to be 39, and three
output neurons predicted three-state probabilities for an amino
acid’s being helix, sheet, or coil. The network was trained with
�1,000 structures from the Protein Data Bank (54) selected to have
a resolution better than 2.5 Å and a sequence identity of �50% as
obtained from the Culled PDB Page (R. L. Dunbrack and G. L.
Wang, Institute for Cancer Research, Fox Chase Cancer Center,
Philadelphia) [now the Protein Sequence Culling Server (PISCES)
www.fccc.edu�research�labs�dunbrack�pisces�)].

The training was performed by using the SMART program
(www.jens-meiler.de�index�soft.html), which performs back-
propagation of errors. The learning rate was decreased from 10�2

to 10�4 during the training process, and the momentum was kept
constant at 0.5. A monitoring set of 100 sequences was used to
interrupt the training process as soon as its standard deviation was
minimized. A second independent set of 100 sequences was used to
evaluate the quality of the prediction. The training took 13,425
cycles (�250 h on a 1.0-GHz Pentium III processor equipped with
2 gigabytes of memory). The prediction from sequence alone is
accessible for academic users via the JUFO server (www.jens-
meiler.de�jufo.html).

Incorporation of Tertiary Structure Information. To use ROSETTA
models for secondary structure prediction, it is necessary to incor-
porate 3D structural information into the neural network input.
Because many structural models (typically a few thousand) with
different and partially wrong secondary structure are built by
ROSETTA, an algorithm is desired that extracts information relevant
for secondary structure prediction from a set of 3D models and
combines it with sequence profile information. Because the local
secondary structure at any sequence position might be wrong in the
majority of the models, it is not used as input. Also, local sequence
effects should be reflected in the primary-sequence information
and should therefore not add new information to the input. The
description of the 3D structure has to focus on the incorporation of
interactions between parts of the molecule that are more distant in
sequence and be robust in dealing with incorrect secondary struc-
ture in some of the models.

For incorporating low-resolution structural information, 90 input
neurons were added to the neural network. The tertiary structure
information fed to the network for a particular amino acid i was
derived from all other amino acids j with C�

i–C�
j distances �8, 12,

and 16 Å and a sequence separation of at least five amino acids
[absolute (i � j) � 5]. For these amino acids, the number of helix,
sheet, and coil residues (3 parameters), their average property
profiles (7 parameters; compare ref. 13), and their averaged posi-

tion-specific scoring matrices (20 parameters) in each of the dis-
tance bins were captured with 30 (3 � 7 � 20) input units. Thus,
a total of 90 (3 distance bins � 30 input units) additional input
neurons for the low-resolution structural information was added to
the original network architecture. The network was trained in the
manner described above for the sequence-alone network, by using
the native structure of the proteins in the training, monitor, and
independent data sets. The training took 14,775 cycles until the
weights were optimized. The prediction from sequence in combi-
nation with a given tertiary structure is accessible for academic
users via the JUFO3D server (www.jens-meiler.de�jufo3D.html).

Tertiary structure information was provided to the network from
either the native structure or 1,000 ROSETTA models (50). We chose
to use the network trained on native structures rather than retrain-
ing it with ROSETTA models. This choice allowed the use of as many
native structures as possible for training, not only of proteins with
�180 aa as foldable with ROSETTA. A ‘‘moving target’’ effect is
avoided in which improvements in ROSETTA would require retrain-
ing. Also, the method is more general in the sense that it potentially
can be applied to models generated with other protein structure
prediction methods without prior retraining.

To obtain a single secondary structure prediction from a set of
structural models, the three-state probabilities predicted by the
neural network were averaged over all models. Before averaging,
each model was weighted according to its score (a better score
suggested a more probable 3D structure) and the internal consis-
tency between the actual secondary structure of the model and the
secondary structure predicted by the neural network using the
model.

Results and Discussion
Analysis of the Artificial Neural Networks. The input-sensitivity
profiles (defined as the first derivative of an output value with
respect to a changing input vector) of the two neural networks
(sequence-only versus sequence-plus-model) are similar over the
sequence window (Fig. 2). Not surprisingly, the actual amino acid
of interest and its direct neighbors had the largest influence on the
prediction. The network that utilized tertiary structure information
obtained �20% less information from the sequence than did the
sequence-only network, as can be seen from the reduced sensitiv-
ities in the sequence profile. This part of the information was
replaced by the low-resolution structural data. The most useful
structural information was taken from the secondary structure of
the spatially close amino acids, but position-based scoring matrices
and the property profiles also contributed.

Secondary Structure Prediction from Sequence-Only Network. The
sequence-only neural network was tested on a set of 137 sequences
with �150 aa that were not used for training. The trained neural
network yielded prediction accuracy (Q3) of 75% (SS1, Table 1), in
agreement with the method of Jones (16) for this set of data (Q3 �
75%).

Secondary Structure Prediction Using Low-Resolution Information
from Tertiary Structure. As expected, the Q3 value improved (to
82%) for the independent set when using the correct 3D structures
as input (SS3, Table 1). This value could be increased further by
including higher-resolution 3D information. However, the low-
resolution representation was chosen because it seemed most
appropriate for the low-resolution structural models obtained from
ROSETTA.

It is encouraging that including the low-resolution structural
information from the true structures corrected serious mistakes in
secondary structure prediction, where sheet, helix, and coil are
interchanged. The gain of information naturally varies from se-
quence to sequence. Whereas, for many sequences, the nonmodi-
fied sequence-only setup yields already high Q3 values of �90% and
not much improvement is possible, some sequences perform rather
poorly with only local information (Q3 � 70%) and allow for a
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significant improvement. This possibility is particularly notable for
�-strand prediction, which improved from 58% to 76% (Table 1).
In contrast to �-helices, �-sheets are defined by nonlocal contacts
and are therefore harder to predict from a local sequence window
alone. Most of this lack of information already can be overcome by
using a low-resolution description of tertiary structure as introduced
here. Whereas the accuracy of helix and coil prediction increased
by only 5% and 2%, respectively, the accuracy of sheet prediction
increased by 18%.

Secondary Structure Prediction Using Predicted Tertiary Structure.
Although the above results are encouraging, they require knowl-
edge of the native structure and hence cannot be used for a protein

of unknown structure. How much can be obtained from low-
resolution and, often, low-accuracy de novo structural models?

The results naturally will suffer when predicted structural models
are used instead of the correct 3D fold. Nonetheless, on average,
over the set of 137 proteins, an increase of 5% in the Q3 value was
obtained (SS2, Table 1). The Q3 value increased from 75% to 80%
when models were used and to 82% when the native structure was
used as input for the neural network over a total of 10,127 aa. More
important was the improvement of 13% in the prediction of
�-sheets. A histogram of the changes in the Q3 values for this set of
proteins is given in Fig. 3a. Although many of the models have
incorrect topologies and even coil or helix in place of a �-strand, if

Fig. 2. Comparative sensitivity analysis for the neural network that uses se-
quence alone (black bars) and the sequence-plus-model network (gray bars). On
the horizontal axis, the sensitivity (numerical derivative of the output response
with respect to a particular input) is plotted for all input parameters given on the
vertical axis. In both cases, the relative increased importance of the central amino
acid(centralAA)andthedecayforpositionsthataremoredistant insequencecan
be seen. In the case of the sequence-plus-model prediction, the influence of the
sequence data is reduced. About 20% of the overall information content is taken
from the input data coding the spatial structure. The major influence of the
scoring matrix in coding the sequence and the strong influence of secondary
structure elements that are spatially close [sec. str. (spat.)] are evident.

Table 1. Comparison of secondary structure prediction results

Correctly predicted, %

Helix Sheet Coil

SS1 Helix 28.9 0.8 7.2
Sheet 1.2 11.8 7.5
Coil 4.6 3.6 34.4

SS2 Helix 31.2 0.4 5.2
Sheet 0.5 14.6 5.5
Coil 4.5 4.4 33.7

SS3 Helix 30.7 0.1 6.0
Sheet 0.2 15.7 4.7
Coil 4.5 2.9 35.2

Results shown were obtained for 137 proteins with 10,127 aa by using
sequence only (SS1; see ref. 13), sequence plus 1,000 ROSETTA models (SS2), and
sequence plus native fold (SS3). SS1 yielded 78%, 58%, and 81% correctly
predicted helices, sheets, and coils, respectively, with a correctly predicted
average of 75%. SS2 yielded 85%, 71%, and 79% correctly predicted helices,
sheets, and coils, respectively, with a correctly predicted average of 80%. SS3
yielded 83%, 76%, and 83% correctly predicted helices, sheets, and coils,
respectively, with a correctly predicted average of 82%.

Fig. 3. Histogram of the change in secondary structure prediction accuracy
(Q3) resulting from inclusion of low-resolution tertiary structure information
from the native structure (black bars) or ROSETTA models (gray bars) in the
neural network secondary structure prediction. The change in Q3 is shown on
the horizontal axis, with count (a) or sequence (b) shown on the vertical axis.
The average improvement for the independent set of 137 structures (a) is 7%
and 5%, respectively, and for the combined set of LIVEBENCH6 and CAFASP3
targets (b) is 10% and 4%, respectively.
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a second �-strand can come close in the majority of the models, the
judgment of the network changes. Conversely, if no partner for a
wrongly predicted �-strand can be found because of spatial restric-
tions, it can turn into a coil or helix.

The improvement that can be gained from the incorporation of
low-resolution 3D models varies from case to case, depending on
the quality of the sequence-only prediction and the variety and
quality of the structural models. Of the set of 137 structures, a subset
of 14 structures with differences in the sequence-only and sequence-
plus-model prediction of �15% of the positions was selected. Table
2 gives an overview of this subset of proteins. The average sequence-
only secondary structure prediction accuracy was 62%, significantly
lower than the 75% seen for the complete set of data. The
prediction accuracy achieved by including the structural models
increased to 75%, which is only 3% lower than that achieved by
using correct structure.

The improvement obtained for the sequence-plus-model predic-
tion raises the question of how well the tertiary structure of the
ROSETTA models alone reflects the true secondary structure of the
protein. A secondary structure prediction from the tertiary struc-
ture of 1,000 models alone was obtained by computing the ratio of
helix, strand, or coil conformation for every amino acid in the 137
proteins of the benchmark set. The Q3 value achieved with this
prediction method (71%) is significantly lower than the prediction
from sequence alone (75%). Hence, the combination of sequence
and tertiary information is critical to obtain an improvement in the
predicted secondary structure.

CAFASP3 and LIVEBENCH6. The neural network was used to predict
the secondary structure from models generated by the ROSETTA
server during the CAFASP3 and LIVEBENCH6 (55) experiments.
The results obtained for the 31 proteins modeled by using the
ROSETTA de novo protocol are consistent with the numbers re-
ported in Table 1 for the independent set of 137 proteins. The Q3
value increased from 72% to 76% when using models and to 82%
when using the native structure as input for the neural network over
a total of 4,423 aa. The distribution over the protein sets is plotted
in Fig. 3b. The average confidence level of the neural network
decision increased from 45% (sequence-only) to 49% (sequence-
plus-model) to 54% (sequence-plus-native structure) as the net-
work came to a more definite decision by using the tertiary structure
in regions where only an ambiguous prediction was made before.

Fig. 4 illustrates ways in which tertiary structure can feed back to
improve secondary structure prediction in four examples from

LIVEBENCH6 and CAFASP3. T148 is a domain-swapped (the
first strand lies in the second domain) ferredoxin fold that consists
of two �-sheets, each of them packed with two helices on one side.
The sequence-only prediction missed the first and the last strand
completely, as indicated in green (which represents coil in Fig. 4).
Also, the prediction of the helical and strand regions was rather
ambiguous at some places. Virtually all of these mistakes were
corrected when the native fold was used in the modified neural
network. The Q3 value increased from 74.1% to 87.7%. The spatial
closeness of weakly predicted �-strands to a different �-strand in the
3D structure helped the neural network to draw the correct
conclusion.

In this case as well as in the other three examples, ROSETTA was
unable to predict the complete protein structure correctly. The two
subdomains were built correctly in some of the models; however,
their relative orientation was wrong, and the domain swap was very
rarely suggested by ROSETTA. Still, those partial predictions allowed
the neural network to improve the secondary structure significantly
to achieve a Q3 of 85.8%. The sampling of possible 3D structures
and the analysis of the consistency of predicted and modeled
secondary structure suggest that �-strands are more likely than coil
or helix in the ambiguously predicted regions.

Domain A of the arterivirus nsp4 (1mbmA) (56) folds in three
subdomains. The first two contain only �-sheet, whereas the latter
one contains two �-helical regions. The single-state prediction was
at 66.2% accuracy, mainly because some small secondary structure
elements were missed and the length of the individual �-strands was
wrongly predicted. When using the native structure as input to the
neural net, many of the ambiguous regions were clearly predicted,
which resulted in an increased Q3 of 75.3% and an improved
confidence level. Beside a better prediction of beginnings and
endings of �-strands, two �-bridges in the third domain, as well as
one additional strand in the second domain, were found correctly.
The ROSETTA models did not capture the complex nonlocal topol-
ogy of the two �-domains. Typical models contained three separate
domains, two of them with a local �-sheet, one �-helical. However,
even these models were sufficient to improve the prediction to a Q3
of 75.8%, although they contained mainly �-hairpins instead of the
less local strand contacts in the native structure.

The third example, domain A of HI0073�HI0074 protein pair
from Haemophilus influenzae (1jogA) (57), is an all-helical protein.
However, the sequence-only prediction gave the end regions of the
first two helices a high strand probability. In addition, one short
helix was predicted as strand, and the prediction for the last helix
had significant coil probability. Still, the sequence-only prediction
was at a high level of 71.3%. When the correct 3D structure was
used, those mispredicted regions were mostly corrected. The strand
signal vanished almost completely, and only at few places was a
significant coil signal obtained, which was, however, still lower than
the helix probability in those regions. The Q3 value increased to
86.0%. ROSETTA was (correctly) unable to bring the regions of the
molecule with an increased strand probability spatially close, and,
hence, the strand regions were converted to helices, leading to an
improved Q3 of 87.6%.

In domain A of the homologous pairing domain from the human
Rad52 recombinase (1kn0A) (58), only the middle strand of the
three-stranded �-sheet was predicted from sequence alone with a
high probability. The two neighboring strands that lie on the edge
of the sheet were predicted as coil with a very low confidence level.
Also, one strand of the small �-hairpin was missing, as well as one
of the short �-helices. When using the 3D structure as additional
input for the modified neural network, most of the strand amino
acids were correctly predicted, and only the small helix was still
predicted as coil. The Q3 value increased from 69.0% to 81.0%. The
prediction from models (Q3 value of 79.9%) was not significantly
worse. Interestingly, the best models built for this protein adopt a
fold that appears to be the spatial inverse of the native structure. In
the model shown in Fig. 4, the three-stranded sheet is properly

Table 2. Coupled prediction of secondary and tertiary structure

PDB code aa Fold type SS1 TS1 SS2 TS2 SS3

1ail_ 70 � 54 6.0 64 6.0 67
1aoy_ 78 �� 76 6.2 89 5.7 82
1bm8_ 99 �� 60 9.3 72 8.8 76
1c8cA 64 � 53 7.6 67 5.0 64
1cc5_ 76 � 70 6.4 86 6.2 84
1dtdB 61 �� 51 6.7 69 5.7 71
1fwp_ 66 �� 56 8.0 68 7.3 77
1hz6A 67 �� 70 4.1 87 3.4 79
1isuA 62 �� 74 7.5 89 6.9 89
1sap_ 66 �� 53 7.3 65 6.6 74
1vie_ 60 � 62 8.5 68 9.0 82
1vqh_ 86 � 56 11.1 71 6.8 83
1wapA 68 � 57 8.3 68 7.7 82
2ezk_ 93 � 74 7.0 85 6.6 83
Average 73 62 7.4 75 6.6 78

PDB, Protein Data Bank; aa, number of amino acids; SS1, percentage of
secondary structure predicted from sequence only; TS1, rmsd with 1D second-
ary structure prediction given in angstroms; SS2, percentage of secondary
structure predicted from models; TS2, rmsd with 3D secondary structure
prediction given in angstroms; SS3, percentage of secondary structure pre-
dicted from native fold.
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Fig. 4. Examples of feedback from tertiary structure to secondary structure prediction taken from the CAFASP3 and LIVEBENCH6 experiments. The native
structures are shown in the first row and are shown from the N terminus (blue) to the C terminus (red). In the second row, the predicted secondary structure from
sequence-only prediction is shown, with predicted helix (red), predicted sheet (blue), and predicted coil (green). Mixtures of those colors represent ambiguously
predicted regions. In the third row, the same color scheme represents the secondary structure prediction obtained by using the native structure as input for the
modified neural network. The fourth row displays the secondary structure prediction obtained from the neural network by using ROSETTA models as input. The
fifth row shows contact maps in which native contacts between an amino acid i and an amino acid j are indicated as black open squares in the right lower triangle
matrix at position (j,i), and the frequency with which the models sampled a particular contact is shown in a gradient from never (dark blue) to always (red), on
a logarithmic scale at the same position (j,i). The upper triangle matrix visualizes how frequently fragments of the 3D structure are correctly predicted in ROSETTA

models; the color at position (i,j) indicates the number of models that have an rmsd 100 � 6 Å to the native structure for the fragment from amino acid i to amino
acid j. The sixth row shows the lowest rmsd model in the ensemble color-coded with the secondary structure prediction obtained from the neural network by
using only this model.
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formed, but the helix is packed on the opposite site compared with
the native structure. In consequence, the small helix bundle sits on
the opposite site. This model still has a relatively high rms deviation
(rmsd) from the native structure (�10 Å); however, all C�–C�

distances are close to the distances measured in the native structure,
and these are the data used by the neural network.

Tertiary Fold Prediction. We investigated whether the tertiary struc-
ture–secondary structure feedback could be extended to generate
improved 3D models using the improved secondary structure
prediction as input to ROSETTA. One thousand structures were built
with the sequence-only prediction (TS1, Table 2) and with the
model-assisted prediction (TS2, Table 2) where the models were
taken from the previous run.

The quality of the models produced was assessed by comparing
the model native C�–C� rmsd of the tenth-most accurate model to
avoid statistical artifacts that might be caused by looking at the best
rmsd only. When using the model-assisted secondary structure
prediction, the average rmsd decreased from 7.4 to 6.6 Å (TS2,
Table 2). Whereas in many cases the rmsd did not change signif-
icantly (�rmsd � 0.5 Å), it did improve for the majority of the
problematic proteins (1c8cA, 1dtdB, 1fwp�, 1hz6A, 1isuA, 1sap�,
1vqh�, and 1wapA) between 0.6 and 4.3 Å. ROSETTA on average
generates poorer models for these proteins than for the complete
set of 137 structures, which might partially be caused by the
ambiguous secondary structure prediction. However, the improve-
ment of the secondary structure prediction is certainly more
significant than the change in the quality of the predicted models.
A second iteration of secondary structure prediction and generat-
ing ROSETTA models further improved neither the secondary
structure prediction nor the 3D models.

The most significant improvement in the quality of the tertiary
fold, which was accompanied by an improvement of the Q3 pre-
diction accuracy of 15%, was for 1vqh, an 86-residue, all-� protein.
Only three of the eight �-strands were recognized, whereas a fourth
was predicted to be a helix when using sequence-only prediction.
After incorporating a set of 1,000 models (obtained by using this
ambiguous secondary structure prediction) into the secondary

structure prediction, the Q3 value became 71%, and seven of the
eight strands were recognized. When using the correct 3D fold as
input, all eight strands were recognized and Q3 was found to be
76%. In this particular case, the predicted structure improved
drastically. The rmsd value of the tenth-best model by rmsd
dropped from 11.1 to 6.8 Å.

Conclusion
Although very accurate for many proteins, secondary structure
prediction from sequence alone can fail if the formation of
secondary structure is strongly coupled to the formation of
tertiary interactions. This is especially true for �-strands, where
nonlocal partners are frequently necessary. Here we show that
even very low-resolution tertiary structure information can
improve the prediction of secondary structure.

A drawback of the new method is its dependence on ROSETTA
models, which limits its application to single-domain proteins.
Incorporation of very long-range interactions between domains and
within single large domains will require improvements in de novo
protein structure prediction methodology. Despite this currently
limited applicability, the method does illuminate the ways in which
tertiary structure can feed back on secondary structure. The
characterization (Fig. 4) of the proteins for which the largest
changes in secondary structure prediction were brought about by
using tertiary structure models suggests that the most important
influences are on regions with some �-strand propensity. Such
regions are predicted to be �-strands if and only if there are nearby
�-strands in plausible tertiary structures. This resolution of ambig-
uous �-strand propensity by the presence (or absence) of tertiary
�-sheet interactions is likely to mirror the fate of segments of the
polypeptide chain with weak �-strand propensity during the actual
folding process.

We thank David Kim and Dylan Chivian for incorporating the method
into the ROSETTA server, and Phil Bradley for carefully reading the
manuscript and generating the contact maps in Fig. 4. J.M. thanks the
Human Frontier Science Program for financial support. This work also
was supported by the Howard Hughes Medical Institute.
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