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Nine different artificial neural networks were trained with the spherically encoded chemical environments

of more than 500 000 carbon atoms to predict th&r NMR chemical shifts. Based on these results the
PC-program “C_shift” was developed which allows the calculation of#8eNMR spectra of any proposed
molecular structure consisting of the covalently bonded elements C, H, N, O, P, S and the halogens. Results
were obtained with a mean deviation as low as 1.8 ppm; this accuracy is equivalent to a determination on
the basis of a large database but, in a time as short as known from increment calculations, was demonstrated
exemplary using the natural agent epothilone A. The artificial neural networks allow simultaneously a precise
and fast prediction of a large number'8€ NMR spectra, as needed for high throughput NMR and screening

of a substance or spectra libraries.

INTRODUCTION efforts which are spent for the development of efficient
structure elucidation programs shall be presented here by
two other current examples. CISOC-SES a computer
assisted expert system that utilizes 1D and 2D NMR data.
Qrecently the NMR assignment of a biologically active
triterpenoid was shown by Peng et®alvith the program
LSD (Logic for SructureDetermination) Nuzillard demon-
strated impressively the potential of systematic structure
elucidation of small molecules combining modern NMR
spectroscopy with artificial intelligence at the example of
conventional high-resolution NMR spectrometers with flow- g:bb%rel_llc acf|06. Howevler, Im mlgst practical cases an
probes or special micro sample probes. Shorter NMR elucidation of a completely unknown structure is not
measuring times are required above all by the high through- requwed. The more common type of structure de_termlnat_|on
put methods developed in combinatorial chemistry. With is the structure verification. In this case, enough information
increasing amounts of spectral data available a new bottle-'S available perhaps on the basis of well-known synthetic

neck has emerged: data analysis. Precise and fast computd£action paths to propose a probable structure. The structure

programs are necessary to enhance the productivity here_mformatlon which is achieved via the chemical shift is

Munk gave recently a vivid presentation of the evolution of usll\JIT\l/lllé Séjgf'c'entlhsrﬁ' Prediction. Atomi lei of
computer enhanced structure elucidation exemplary by the. I emlga _ h'lt re |ct||on. I tqmlccj;#uc el ohong I
structure determination of the antibiotic actinobdliim the Isotope located within one molecule in different chemica
1960s the computer assisted elucidation of unknown struc- €nvironments are shielded differently by the!r electron cloud.
tures required several man years using the structure generatd?‘S a result, d|fferent. resonance frequenqes are observed
ASSEMBLE. Forty years later, with both, more sophisticated 9Uing @n NMR experiment exciting these isotopes. If these
NMR spectroscopic methods and computer software, the timefrequenues are ”?easured as differences to thg resonance
required to determine the structure has been reduced toﬁrique'nqll c;:"fa’rj llr_}r:er ;tanda[d,hyfileylare desblgnated as
several days (time for data collection included). Now the chemical shifts”. The chemical shiit value combines two

program SESAMI generated four candidate structures in 5 advantages for structural analysis. It is an easily obtainable
min CPU time using only the available 1D and 2D NMR spectral parameter, and its dependence on chemical structure
data. Lindel et al. also use both the NMR spectroscopic is well-known? The chemical shift of a carbon is, in addition

detectable connections between nuclei and their chemicalt© itS state of hybridization, mainly influenced by the kind
shifts? in their program COCONdonstitutions fromcon- and number of the bond atoms and by their distances to the
nectivities) which was developed for the generation of all observed carbon. The chemical shift of a carbon atom can

possible constitutions for complex natural products. The be mfluenced py another atom in two different ways:
electron interaction over covalent bonds or through space.

NMR spectroscopy is undoubtedly one of the most
important methods used for structure determination of
chemical compounds. In recent years the power of NMR
methods and the sophistication of spectrometers increase
clearly. This was achieved by a number of new technidues.
Only a few of them should be named here. The measuremen
time was decreased drastically by pulsed field gradients,
double or single quantum coherence methods, and finally
by the so-called “tubeless NMR”. This is the fitting of

* Corresponding author phonet-+49 69 798 29 798; fax:++49 69 In solution the second effect appears possibly as a “solvent
798 29 128, e-mail: mj@org.chemie.uni-frankfurt.de. effect”. However, electron interaction through space is only
T University of Frankfurt. ) . ' .
*University of Mainz. important if the distance between the observed and influenc-
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approaches are thinkable: starting from an experimentally

determined chemical shift value a suitable chemical environ-

ment can be determined and starting from a chemical

structure the relevant chemical shift can be estimated. Con-

sequently*C NMR spectra databases are suitable for three

applications: (1) the prediction of NMR parameters for any

4 molecular structure, (2) the verification of existing assign-
T ments, and (3) the determination of one or more possible

Figure 1. Schematic representation of the spherical division of molecular structures corresponding t6@ NMR spectrum.

the chemical environment of an carbon atom in a molecule. The (This contains the simultaneous assignment of individual

carbon 7a of the substituted 1,2,3,6,7,7a-hexahydroinden-5-one i . .
selected as focus®). Five spheres starting from this focus are "NMR signals to the respective carbon of a known structure.)

shown (1 to V). The beyond environment is summarized ina “sum-  However, the results can only be offered with a statistical
sphere” §). Them-contact areas o_f the focus carbon were marked probability, depending on the quantity and quality of the
‘t'é')t(?).a gray background and the ring closure elements with )( (see available database entries. In addition to the time required

for compiling the data, the greatest problem of database

stereochemical analyses. The stronger effect is transmittedh@nagement is the accuracy and reliability of the represented

via the orbitals following covalent bonds. It depends on the data. In other words, the accuracy of the predicted chemical
number and thes- or z-type of the connecting bonds. shifts, chemical environments, or structures cannot be more

Focusing on a randomly chosen atom in a molecule, one precise than the stored data. For this reason, careful examina-

can consider all other atoms of this molecule as members oftions of shift assignments are just as important as the
spheres. These spheres surround the focused atom, and thefyPographical error checking. Usually, some quality checking
number is identical to the number of bonds between the Procedures are applied. In particular the assignments for
focused atom and the atoms combined in this sphere. Inquaternary carbons_ have been t_W|sted in a_number of cases,
Figure 1 the subdivision of a molecule into five different because an unambiguous experimental assignment was often
spheres (Roman numerals) with respect to one carbon atonf0t possible in the past.
(focus) is shown. In principle this procedure was already Two further possibilities for estimating the assignment
described in 1973 by Bremser with his well-known HOSE between chemical structures and chemical shifts besides
code fierarchicallyorderedspherical description oénviron- database search should be mentioned here: the calculation
ment)® The influence of the substituents on the chemical of the chemical shift values by applications of empirical
shift of the focused carbon normally decreases with an methods and the computation by quanta chemical procedures.
increasing number of bonds between them and therefore alscHowever, quanta chemical computations, e.g. with the IGLO-
with the increase of the sphere. Bybonded atoms the method {ndividual gauge for localized orbitals)!* are
electrons are kept in the molecular orbitals located betweenrelatively extensive. Meanwhile the prediction’6€ NMR
two atoms. Therefore the influence decreases here fast withspectra is one of the most intensely studied applications of
increasing sphere. By far different is the situation in the case empirical modeling. This method is based on the assumption
of atoms bonded over a conjugateeelectron system. The  that the influence of different substituents on the chemical
electron density distribution can be influenced over more shift of an individual carbon atom can be defined simply by
than one bond, and larger effects are induced over four, five, a set of constant values, the “increments”. According to the
or even more bonds. chemical environment of a carbon atom all increments are
A further advantage of the NMR chemical shift is the added up. The chemical environment is defined by the kind
availability of huge amounts of experimental data. Several and number of the neighboring atoms or atomic groups and
databases exist today containing hundreds of thousands oby their distances to the considered carbon atom, in this case.
chemical shift values in particular f32C nuclei and the  The increments themselves were determined by multiple
appending information about the chemical environment of linear regression analysis using data sets of observed
these individual carbon. These data are an excellent basicchemical shifts from structurally related compounds. The
for computer assisted structure determination. Only some mean advantage of these increments is their simple applica-
examples of electronically stored databases should betion and the shortness of its computation. However, the
mentioned here: SPECINFG further development of the  increments are structure class dependent and available only
13C spectral database created by Bremser ét GISEARCH?! for some substance classes and/or structure gréepg, for
a database created by Robien in the beginning of the 1990salkanes? alkenes; substituted benzenésnaphthalenes, and
WINDAT,*? a database created by Trepalin and co-workers; pyridines!® Different PC programs were developed in the
and the CNMR?® database which was developed few years past which allow the computation of more complex struc-
ago by the ACD company. tures, for example the programs SPECTCGODtreated by
Looking closer3C NMR spectra databases are statistical Pretzsch et al. and CSPE€Xeveloped by Cheng and
tools to establish the relationships between NMR spectral Kasehagen. However, the increments employed in these
parameters and the chemical environment of individual programs were obtained from individual representatives of
carbon atoms to propose either chemical structures or spectrasingle substance classes too, and one has to be careful during
The 13C chemical shift value is extremely suitable for this their application. Possible interactions between several
purpose because of its accuracy, reproducibility, and intel- increments are often not considered by these approaches. This
ligible structure dependence. Using a large collection of was recently shown for the aromatic carbons in substituted
representative molecules for structure determination two benzeneg? In such a way, the structure analyst must
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currently decide between two possibilities: Either for a into one type if they only differ in the number of bonded
precise prediction requiring a long time or for the rapid hydrogen atoms. This was necessary since the number of
available information afflicted with a larger error. For this the representatives would have been too small, for example
reason, several attempts were taken in the past to describén the case of olefinic carbons with one or two hydrogen
the association between NMR chemical shifts and chemical atoms (type 6), for sphybridized nitrogen (type 13), and
structure more precisely. Different nonlinear numerical and for sp® hybridized phosphorus (type 20) and sulfur (type 22).
statistical techniques, such as principal component analysisTwo further descriptors were introduced in order to obtain
and artificial neural networks, were used. a complete description. One descriptor holds the number of
Neural Networks. The main advantage of neural networks all hydrogen atoms located in the individual sphere (type
compared to other methods is their greater capacity to extract29). In order to consider the influence on th€ NMR
general information from a training data set and apply it on chemical shift caused by the formation of rings, a second
presented new data. Neural networks appeared in chemistrysum descriptor holds the number of ring closures (type 30).
at the beginning of the 1998%The first publications dealing ~ Two different possibilities have to be distinguished: If the
with the determination ot3C NMR chemical shift values  ring is closed within one sphere the descriptor increased by
using neural networks were also published at this time. two. That is the case in odd-numbered rings (3, 5, n+2
Kvasnicka et al. determined the chemical shifts of carbons 1 atoms with re N), whereas in even-numbered rings (4, 6,
in monosubstituted benzen¥s?® and Doucet and co- ..., 2n atoms withn ¢ N) the ring is closed over two spheres.
workers predicted the shifts of C5 to C9 alkaféénker In this case the descriptor increased by one for both spheres
and Jur® trained a three layer neural network with a data affected. In the example visualized in Figure 1, the five-
set of 391 steroid carbon atoms using the back-propagationmembered ring is closed between carbons C-2 and C-3 within
learning algorithm. The applied network architecture con- the sphere Il. In contrast the six-membered ring must be
sisted of 13 input units corresponding to calculated atom- closed between carbons C-4 and C-6, both in sphere II, and
centered descriptors, 40 hidden neurons, and 116 outputcarbon C-5 in sphere lIl.
neurons corresponding to 0.5 ppm chemical shiftincrements The chemical environments of the carbons are described
in the range of 8.766.7 ppm. The examined results were by sorting the atoms in spheres as given in Figure 1 and
superior to those achieved with linear regression techniquescounting the occurrence of every atom type in each sphere.
in every case. Further works followed, all of them with the As shown in Figure 1, five spheres (I to V) are formed for
common characteristic (C NMR chemical shift prediction  every carbon. All atoms in further distances are projected in
for a group or a class of substances with similar chemical an additional “sum sphere’(). Consequently, 30 numbers
structures, e.g. for alkané¥ 23! cyclohexane&? alkenes’®34 are necessary to describe one sphere, and 180 numbers are
substituted naphthalen&grisaccharide& dibenzofurane] necessary for the complete description of the environment
ribonucleoside€® and substituted benzen®sOn the as- of an individual carbon. However, this description is only
sumption that the influences of substituents on an observedbased on number, kind, and distances of the substituents,
carbon are only similar within an individual substance class, which is not sufficient. In addition to this nonspecific
the chemical shift values computed with such a neural enumeration, the descriptors are extended by a so-catted “
network cannot been generalized as desired. Consequentlycontact area”, in order to take the special importance of
this is not different from the respective increment systems, conjugatedz-electronic systems into consideration. Two
certainly more precise but limited in their applicability atoms are in-contact” if a conjugatee-electronic system
though. Therefore a fast method for computation of most exists from at least one neighbor of the first atom to one
organic molecular structures is desirable similar as by the neighbor of the other atom. The two atoms themselves are
use of large databases. not taken into consideration for this parameter since their
Another approach combining these advantages might bebelonging to the conjugated system is given by their atom
the use of genetic algorithni However it was not tested  type. Therefore, by description of the environment of carbon
yet for this purpose and will not be discussed in this paper. C-7a in Figure 1 (focus), the double bonds in the side-chain
Molecular Structure Descriptors. In order to calculate  must not be considered ascontact, since they do not belong
the chemical shift values of carbon atoms with neural to a conjugateds-electronic system that includes one
networks it is necessary to describe the atom types and theneighbor of the focused carbon. Otherwise, twésybrid-
chemical environments of all atoms numerically. An opti- ized carbon atoms have to be considered here. The carbons
mum must be found for the number of the applied descrip- C-3 and C-6 are neighbors of the conjugateélectronic
tors. On the one hand, the number must be as small assystem (C3s&C4-C5=0) just as the observed carbon C-7a.
possible for computational reasons; on the other hand, theln Figure 1 the entirer-contact area of the carbon C-7a is
descriptors must feature clearly the differences in molecular shown as shaded region. The molecular structure descriptors
structures. In total 28 descriptors were determined for 28 are extended by a second set of 30 numbers for each sphere
different atom types and are summarized in Table 1. using the atom types and sum parameters described above
Additionally, the numbers of representatives of these atom in Table 1. But in contrast to the general count in the first
types found in a data base of about 40 000 moleéuidth set only the atoms being in-contact with the focused carbon
up to 100 heavy atoms are indicated. Atom types are derivedwere considered now. Consequently, for each sphere two
from element number, hybridization state, and number of sets of descriptors result for the encoding of the environment.
bonded hydrogen atoms. As given in Table 1, nine different This is shown in Figure 2. The structure of the descriptors
atom types were defined for the 526 565 carbon atoms whichfor the calculation of the chemical shift of an individual
were available for the prediction 61C NMR chemical shifts carbon is represented schematically for the first sphere on
in total. In some cases, different atoms were summarizedthe top and for all spheres in the middle of Figure 2.
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Table 1: Atom Types (+28) and “Sum-Types” (2930) Defined for the structure input was written in-€t+ for Windows
for Describing Atom Environments and Their Frequencies in the 95/98/NT.
Data Set
ID atom type frequency of atoms of this type RESULTS AND DISCUSSION
1 [co 19 527
2 [CH- 49 556 In Figure 2 the architecture of neural networks used here
131 g& 1%3 %Zi is shown schematically. While the number of input and
5 =CO 50 711 output units was fixed, the number of the hidden neurons
6 =CH-/=CH, 27 556 had to be determined experimentally. The best results were
g )E[%/icw)/:c: 633&% achieved with a number of520 hidden neurons, depending
9 ) [TH (z?r/yl) 117 107 on the carbon atom type. In Table 2 the descriptions are
10 - 9876 compiled for the nine different neural networks. The results
i% N':b 3?512115 achieved with these nets for the training and testing data
13 '=N_/=NH 7427 sets are also given in the form of statistical information,
14 =N 2053 respectively. It is shown that a mean deviation of 1.79 ppm
ig "BINOZ | %682 and a standard deviation of 2.10 ppm resulted for the more
- )N (ary) 3 n than 15 000 carbons in the test data sets. The accuracy of
18 -OH 20 626 these calculations is much better in comparison to systems
19 =0 39259 based on fixed increments, especially if complex structures
%g gé’_PH'/'PH 1%%% are investigated. In Figure 3 the correlation between the
22 -S-/-SH 4146 computed and the experimental chemical shift values are
23 =S 1214 shown for all nine carbon atom types obtained from the test
24 50, 1789 data sets. The appropriate correlation coefficients are given
25 -F 3613 .
26 -Cl 9585 in Table 2.
%g :Fr 2;33 On closer examination of these results it is striking that
29 sum of all hydrogen atoms bond in this sphere the largest deviations were obtained for the sp-hybridized
30 sum of all ring closures in this sphere carbons (standard deviation of 3.8 ppm for type 7) and for

carbons with sphybridization (standard deviations of 3.7
and 3.6 ppm for types 5 and 6), respectively. For triple

EXPERIMENTAL SECTION bonded carbons the number of examples was relatively smalll.
A total of 40000 molecules were available for the That causes the higher uncertainty in this calculation.
calculations. The 526 565 carbons with well-knowicC Furthermore one has to note that all effects influencing

NMR chemical shifts and molecular structure assignnients the chemical shifts through space were not considered here.
were distinguished the nine mentioned atom types (Table Therefore comparable carbons in different stereoisomers do
2). All chemical shifts were estimated in deuterated chlo- not become distinguishable through their different spatial
roform (CDCb) or in carbontetrachloride (C@land refer environments. It is well-known that the different arrange-
to tetramethylsilane (TMS) as internal standard. With this, ments of substituents either in tige or in the Z-direction
solvent effects were excluded as far as possible. Stereo-can influence the chemical shift of the olefinic carbons up
chemical information was not available for the given to 5 ppm. Influences in this order of magnitude were also
molecules. The environment of every individual carbon atom observed in different configurational and conformational
was encoded with the descriptors from Table 1. Three isomers caused by the dissimilar spatial arrangements of their
hundred sixty descriptors were used as input vector for the substituents. Furthermore, one observes an increase of the
neural networks, whereas the individd& NMR chemical ~ uncertainty for sp hybridized carbons with an increasing
shift value represents the output. For each of the nine atomnumber of non-hydrogen substituents. Here, the standard
types representing a carbon atom an individual neural deviation increases from 1.3 ppm for methyl group carbons
network was constructed and trained using back-propagationup to 3.4 ppm for the quaternary carbons (Table 2). This is
of errors* The amount of available molecules was randomly €xpected, since the chemical shift of a methyl group with
subdivided into three sets. Ninety percent of data was usedthree fixed substituents in the first sphere is much easier to
for the training of the neural networks. During the training determine than the chemical shift of a quaternary carbon
process the percentage of data was increased stepwise up tohere four different substituents can interact in the first
90% maximum. A second data set contained 7% of the sphere already.
available data for monitoring. The training and monitoring  As already mentioned, the influences of the substituents
data sets were used simultaneously. To avoid “overtraining”, on the chemical shifts depend on their distances to the
the iterative training process was stopped if the deviation observed carbon and on its affiliation to a conjugated
for the monitoring data set increased again. The hyperbolic z-system. This knowledge can also be obtained analyzing
tangent (tanh) was found to give best results as a transferthe weights of the trained neural networks. Figure 4 shows
function. The number of hidden neurons was optimized to the sensitivities of the input units of three different neural
give the lowest error for the monitoring set of data. Finally, networks, subdivided in the six spheres and the types of
the third data set of 3% randomly selected molecules wascovalent bonds. These values were determined for every input
used as an independent set for testing the trained networksunit, by variation of their inputs, while all other inputs stay
The PC program C_shfft which included the trained  constant at zero. The sensitivity of the selected input is given
neural networks and a simply manageable structure-editorby the range detected at the output. In Figure 4 the sums of
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Table 2: Number of Hidden Neurons, Frequencies of Atom TypesqJl Correlation Coefficients, Standard Deviations (in ppm), and Mean
Deviations (in ppm) for the Training and Test Data Sets of the Nine Different Carbon Atom Types

training and monitoring data test data

no. hidden corr std m.d. corr std m.d.
ID atom type neurons count coeff [ppm] [ppm] count coeff [ppm] [ppm]
1 [CO 10 18984 0.995 1.83 171 543 0.983 3.42 2.87
2 [CH- 10 48 032 0.984 2.37 2.44 1542 0.984 2.39 2.47
3 -CH,- 20 112 639 0.982 1.85 151 3536 0.985 2.65 1.39
4 -CHs 20 71547 0.989 1.47 1.16 2177 0.988 1.30 1.01
5 =CO 10 49 139 0.989 2.71 2.71 1518 0.981 3.68 2.72
6 =CH-/=CH, 10 26 691 0.959 3.78 3.28 865 0.966 3.60 3.46
7 =C-/=CH/=C= 5 3675 0.995 1.99 2.18 118 0.988 3.80 2.96
8 ) [C- (aryl) 20 66 433 0.982 1.88 2.02 1983 0.981 1.72 1.84
9 ) [CH (aryl) 20 113 655 0.971 1.57 1.13 3452 0.963 181 1.35
all 510 795 0.981 1.97 1.75 15716 0.979 2.10 1.79

| 1. sphere ]
f all 1 [ n- bonded |

[ 1. sphere [ 2. sphere 1 i 3. sphere 1T 4. sphere 1 T 5. sphere 1T sum sphere 1
[ al  1ln-bondedl [ al 1lm-hondedl [ al Ilm-bondedl [ all llz-hondedl [ all 1fzx-hondedl I all Iln-bonded!

3850

Hcov=z—|

T Zmoo-—x

HCToTHCO

chemical shift

Figure 2. Schema of a three layer neural network for calculating chemical shifts. Sixty numbers divided in two sets result as input for the
individual spheres of the environment, respectively. Thirty numbers were used for all substituents (all), and the second set of 30 numbers
hold the count of the atoms in the-contact areasn(. In total 360 input values were required for the five individual spheres and the
additional sum sphere. The number of hidden neurons varied between 5 and 20. The single output neuron predicts the chemical shift of the
observed carbon atom.

the sensitivities for 30 input neurons for every sphere and sphere was observed a smaller influence in comparison to
every bonding type is shown for three different carbon atom the sum of all substituents.

types, respectively. Methyl groups (Figure 4a) shown a fast To test the capability of the method for the determination
decrease of the influence of substituents with increasing of ¥*C NMR chemical shifts, the well-known epothilone A
sphere number. For all atoms beyond the third sphere thewas chosen as an example (Figure 5). Whereas the structure
influence is low at all. This is in accordance with the and the NMR spectra of this natural cytotoxic agent is
knowledge of the substituents induced shifts. In contrast to described in detaff? this molecule was not included into
this the atoms withz-contact show distinctly smaller the databaseand is therefore used for a comparative
influences. A significant increase of the sensitivity against determination. Consequently, epothilone A was also not a
atoms with w-contact was observable for the double- part of the training or testing data set of the neural networks.
substituted sphybridized carbons (Figure 4b). Since most In Table 3 all experimentally determinédC NMR chemical

of the conjugated systems do go beyond the second sphereshifts’? are listed as well as the values calculated by use of
a strong decrease was observed after this sphere. Finally thehe neural network$ and the values predicted from a
influence ofr-conjugated systems can be seen clearly in database after spherical coding of all carbons with the HOSE
aromatic systems (Figure 4c). The sensitivity fobonded code. Experimental chemical shifts were only available for
atoms is constantly high over the first three spheres in orderdetermination in DMSO. So, the agreements between
to decrease slowly behind the third sphere. Only in the first experimental and computed values were not as precise as
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Figure 3. Correlation of chemical shifts of carbons from test data sets determined by use of the data base (x-axis) and by neural networks
(y-axis). The results are shown for the nine different types of carbon atoms. The numbering of the diagrams is identical to the ID used in
Tables 1 and 2. All data are given in ppm with respect to TMS. For the correlation coefficients and other statistical results look at Table

sphere sphere

Figure 4. Sum of the sensitivity of the input-units depending on spheres and the types of the covalent bonds for the neural networks
trained (a) for methyl carbons (atom type 4), (b) for olefinic carbons (atom type 5), and (c) for aromatic carbons (atom type 8).

expected. However, this restriction concerned all determi- here were 2.5 ppm for the neural networks and 2.4 ppm for
nation procedures uniformly. The standard deviations found the determination using the HOSE code description. There-



FasT DETERMINATION OF 13C NMR CHEMICAL SHIFTS

Figure 5. Structure of epothilone A.

Table 3: *3C NMR Chemical Shifts (in ppm) of Epothilone?A
chemical shift [ppm]

atom ID(acc. Figure 5) exptl neuralnet specinfo  spectool

1 170.2 173.3 172.2 172.0

2 38.3 36.6 38.9 36.1

3 70.9 73.7 72.8 73.4

4 53.0 52.6 52.8 53.6

5 216.9 2169 215.9 217.0

6 45.2 45.3 42.3 44.6

7 75.7 75.4 73.5 75.3

8 35.3 335 35.0 34.3

9 29.5 32.3 27.7 30.7

10 23.3 24.8 23.7 24.0

11 26.6 30.9 29.9 31.6

12 56.4 61.1 57.9 56.6

13 54.3 58.0 53.6 50.9

14 31.9 35.1 31.0 33.1

15 76.2 76.4 74.7 78.7

16 137.1 137.8 138.7 143.0

17 118.9 122.2 114.2 120.6

18 151.8 159.5 149.2 142.5

19 1175 1164 123.1 118.7

20 164.0 169.5 165.7 165.9

21 18.6 18.9 18.9 16.2

22 22.4 21.6 20.6 14.6

23 20.6 21.6 20.6 14.6

24 16.5 15.7 14.6 8.4

25 18.6 15.8 13.2 13.9

27 14.0 16.7 16.6 10.7

mean dev: 2.2 1.9 2.9
std dev: 2.5 2.4 3.8

corr coeff: 0.9991 0.9991 0.9980

aThe shifts were determined experimentally in DMSO and calculated
by the neural network by the HOSE code based estimation performed
with the Specinfo data-badeand by increments (SpecTod¥).

fore, the results are of a comparable quality. But the
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CONCLUSIONS

Artificial neural networks offer a fast and accurate
possibility to calculaté®C NMR chemical shifts of organic
compounds. While the method has an essentially lower
standard deviation than increment methods, the computation
time is 1000 times faster than using comparable accurate
database predictions of chemical shifts. This makes neural
networks ideal for screening results of stucture generators
or checking the entries of a database. If a large humber of
13C NMR spectra has to be predicted or a fast and easy check
of a structure is necessary, this approach is a very good
opportunity. Moreover the large amount of disk space for
saving the database or long time for loading data from
external computers are no longer necessary. It would also
be possible to perform the training of the network interac-
tively, so that every scientist could create a network
specialized in the groups of substances he or she is dealing
with.
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