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Nine different artificial neural networks were trained with the spherically encoded chemical environments
of more than 500 000 carbon atoms to predict their13C NMR chemical shifts. Based on these results the
PC-program “C_shift” was developed which allows the calculation of the13C NMR spectra of any proposed
molecular structure consisting of the covalently bonded elements C, H, N, O, P, S and the halogens. Results
were obtained with a mean deviation as low as 1.8 ppm; this accuracy is equivalent to a determination on
the basis of a large database but, in a time as short as known from increment calculations, was demonstrated
exemplary using the natural agent epothilone A. The artificial neural networks allow simultaneously a precise
and fast prediction of a large number of13C NMR spectra, as needed for high throughput NMR and screening
of a substance or spectra libraries.

INTRODUCTION

NMR spectroscopy is undoubtedly one of the most
important methods used for structure determination of
chemical compounds. In recent years the power of NMR
methods and the sophistication of spectrometers increased
clearly. This was achieved by a number of new techniques.1

Only a few of them should be named here. The measurement
time was decreased drastically by pulsed field gradients,
double or single quantum coherence methods, and finally
by the so-called “tubeless NMR”. This is the fitting of
conventional high-resolution NMR spectrometers with flow-
probes or special micro sample probes. Shorter NMR
measuring times are required above all by the high through-
put methods developed in combinatorial chemistry. With
increasing amounts of spectral data available a new bottle-
neck has emerged: data analysis. Precise and fast computer
programs are necessary to enhance the productivity here.
Munk gave recently a vivid presentation of the evolution of
computer enhanced structure elucidation exemplary by the
structure determination of the antibiotic actinobolin.2 In the
1960s the computer assisted elucidation of unknown struc-
tures required several man years using the structure generator
ASSEMBLE. Forty years later, with both, more sophisticated
NMR spectroscopic methods and computer software, the time
required to determine the structure has been reduced to
several days (time for data collection included). Now the
program SESAMI generated four candidate structures in 5
min CPU time using only the available 1D and 2D NMR
data. Lindel et al. also use both the NMR spectroscopic
detectable connections between nuclei and their chemical
shifts,3 in their program COCON (constitutions fromcon-
nectivities) which was developed for the generation of all
possible constitutions for complex natural products. The

efforts which are spent for the development of efficient
structure elucidation programs shall be presented here by
two other current examples. CISOC-SES4 is a computer
assisted expert system that utilizes 1D and 2D NMR data.
Recently the NMR assignment of a biologically active
triterpenoid was shown by Peng et al.5 With the program
LSD (Logic for StructureDetermination) Nuzillard demon-
strated impressively the potential of systematic structure
elucidation of small molecules combining modern NMR
spectroscopy with artificial intelligence at the example of
gibberellic acid.6 However, in most practical cases an
elucidation of a completely unknown structure is not
required. The more common type of structure determination
is the structure verification. In this case, enough information
is available perhaps on the basis of well-known synthetic
reaction paths to propose a probable structure. The structure
information which is achieved via the chemical shift is
usually sufficient here.

NMR Chemical Shift Prediction. Atomic nuclei of one
isotope located within one molecule in different chemical
environments are shielded differently by their electron cloud.
As a result, different resonance frequencies are observed
during an NMR experiment exciting these isotopes. If these
frequencies are measured as differences to the resonance
frequency of an inner standard, they are designated as
“chemical shifts”. The chemical shift value combines two
advantages for structural analysis. It is an easily obtainable
spectral parameter, and its dependence on chemical structure
is well-known.7 The chemical shift of a carbon is, in addition
to its state of hybridization, mainly influenced by the kind
and number of the bond atoms and by their distances to the
observed carbon. The chemical shift of a carbon atom can
be influenced by another atom in two different ways:
electron interaction over covalent bonds or through space.
In solution the second effect appears possibly as a “solvent
effect”. However, electron interaction through space is only
important if the distance between the observed and influenc-
ing atom is small. It has to be considered specially during
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stereochemical analyses. The stronger effect is transmitted
via the orbitals following covalent bonds. It depends on the
number and theσ- or π-type of the connecting bonds.
Focusing on a randomly chosen atom in a molecule, one
can consider all other atoms of this molecule as members of
spheres. These spheres surround the focused atom, and their
number is identical to the number of bonds between the
focused atom and the atoms combined in this sphere. In
Figure 1 the subdivision of a molecule into five different
spheres (Roman numerals) with respect to one carbon atom
(focus) is shown. In principle this procedure was already
described in 1973 by Bremser with his well-known HOSE
code (hierarchicallyorderedspherical description ofenviron-
ment).8 The influence of the substituents on the chemical
shift of the focused carbon normally decreases with an
increasing number of bonds between them and therefore also
with the increase of the sphere. Byσ-bonded atoms the
electrons are kept in the molecular orbitals located between
two atoms. Therefore the influence decreases here fast with
increasing sphere. By far different is the situation in the case
of atoms bonded over a conjugatedπ-electron system. The
electron density distribution can be influenced over more
than one bond, and larger effects are induced over four, five,
or even more bonds.

A further advantage of the NMR chemical shift is the
availability of huge amounts of experimental data. Several
databases exist today containing hundreds of thousands of
chemical shift values in particular for13C nuclei and the
appending information about the chemical environment of
these individual carbon. These data are an excellent basis
for computer assisted structure determination. Only some
examples of electronically stored databases should be
mentioned here: SPECINFO,9 a further development of the
13C spectral database created by Bremser et al.;10 CSEARCH,11

a database created by Robien in the beginning of the 1990s;
WINDAT,12 a database created by Trepalin and co-workers;
and the CNMR13 database which was developed few years
ago by the ACD company.

Looking closer,13C NMR spectra databases are statistical
tools to establish the relationships between NMR spectral
parameters and the chemical environment of individual
carbon atoms to propose either chemical structures or spectra.
The 13C chemical shift value is extremely suitable for this
purpose because of its accuracy, reproducibility, and intel-
ligible structure dependence. Using a large collection of
representative molecules for structure determination two

approaches are thinkable: starting from an experimentally
determined chemical shift value a suitable chemical environ-
ment can be determined and starting from a chemical
structure the relevant chemical shift can be estimated. Con-
sequently,13C NMR spectra databases are suitable for three
applications: (1) the prediction of NMR parameters for any
molecular structure, (2) the verification of existing assign-
ments, and (3) the determination of one or more possible
molecular structures corresponding to a13C NMR spectrum.
(This contains the simultaneous assignment of individual
NMR signals to the respective carbon of a known structure.)

However, the results can only be offered with a statistical
probability, depending on the quantity and quality of the
available database entries. In addition to the time required
for compiling the data, the greatest problem of database
management is the accuracy and reliability of the represented
data. In other words, the accuracy of the predicted chemical
shifts, chemical environments, or structures cannot be more
precise than the stored data. For this reason, careful examina-
tions of shift assignments are just as important as the
typographical error checking. Usually, some quality checking
procedures are applied. In particular the assignments for
quaternary carbons have been twisted in a number of cases,
because an unambiguous experimental assignment was often
not possible in the past.

Two further possibilities for estimating the assignment
between chemical structures and chemical shifts besides
database search should be mentioned here: the calculation
of the chemical shift values by applications of empirical
methods and the computation by quanta chemical procedures.
However, quanta chemical computations, e.g. with the IGLO-
method (individual gauge for localized orbitals),14 are
relatively extensive. Meanwhile the prediction of13C NMR
spectra is one of the most intensely studied applications of
empirical modeling. This method is based on the assumption
that the influence of different substituents on the chemical
shift of an individual carbon atom can be defined simply by
a set of constant values, the “increments”. According to the
chemical environment of a carbon atom all increments are
added up. The chemical environment is defined by the kind
and number of the neighboring atoms or atomic groups and
by their distances to the considered carbon atom, in this case.
The increments themselves were determined by multiple
linear regression analysis using data sets of observed
chemical shifts from structurally related compounds. The
mean advantage of these increments is their simple applica-
tion and the shortness of its computation. However, the
increments are structure class dependent and available only
for some substance classes and/or structure groups,15 e.g. for
alkanes,16 alkenes,17 substituted benzenes,18 naphthalenes, and
pyridines.19 Different PC programs were developed in the
past which allow the computation of more complex struc-
tures, for example the programs SPECTOOL20 created by
Pretzsch et al. and CSPEC221 developed by Cheng and
Kasehagen. However, the increments employed in these
programs were obtained from individual representatives of
single substance classes too, and one has to be careful during
their application. Possible interactions between several
increments are often not considered by these approaches. This
was recently shown for the aromatic carbons in substituted
benzenes.22 In such a way, the structure analyst must

Figure 1. Schematic representation of the spherical division of
the chemical environment of an carbon atom in a molecule. The
carbon 7a of the substituted 1,2,3,6,7,7a-hexahydroinden-5-one is
selected as focus (b). Five spheres starting from this focus are
shown (I to V). The beyond environment is summarized in a “sum-
sphere” (∑). Theπ-contact areas of the focus carbon were marked
with a gray background and the ring closure elements with )( (see
text).
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currently decide between two possibilities: Either for a
precise prediction requiring a long time or for the rapid
available information afflicted with a larger error. For this
reason, several attempts were taken in the past to describe
the association between NMR chemical shifts and chemical
structure more precisely. Different nonlinear numerical and
statistical techniques, such as principal component analysis
and artificial neural networks, were used.

Neural Networks.The main advantage of neural networks
compared to other methods is their greater capacity to extract
general information from a training data set and apply it on
presented new data. Neural networks appeared in chemistry
at the beginning of the 1990s.23 The first publications dealing
with the determination of13C NMR chemical shift values
using neural networks were also published at this time.
Kvasnicka et al. determined the chemical shifts of carbons
in monosubstituted benzenes,24-26 and Doucet and co-
workers predicted the shifts of C5 to C9 alkanes.27 Anker
and Jurs28 trained a three layer neural network with a data
set of 391 steroid carbon atoms using the back-propagation
learning algorithm. The applied network architecture con-
sisted of 13 input units corresponding to calculated atom-
centered descriptors, 40 hidden neurons, and 116 output
neurons corresponding to 0.5 ppm chemical shift increments
in the range of 8.7-66.7 ppm. The examined results were
superior to those achieved with linear regression techniques
in every case. Further works followed, all of them with the
common characteristic of13C NMR chemical shift prediction
for a group or a class of substances with similar chemical
structures, e.g. for alkanes,29-31 cyclohexanes,32 alkenes,33,34

substituted naphthalenes,35 trisaccharides,36 dibenzofuranes,37

ribonucleosides,38 and substituted benzenes.22 On the as-
sumption that the influences of substituents on an observed
carbon are only similar within an individual substance class,
the chemical shift values computed with such a neural
network cannot been generalized as desired. Consequently,
this is not different from the respective increment systems,
certainly more precise but limited in their applicability
though. Therefore a fast method for computation of most
organic molecular structures is desirable similar as by the
use of large databases.

Another approach combining these advantages might be
the use of genetic algorithms.39 However it was not tested
yet for this purpose and will not be discussed in this paper.

Molecular Structure Descriptors. In order to calculate
the chemical shift values of carbon atoms with neural
networks it is necessary to describe the atom types and the
chemical environments of all atoms numerically. An opti-
mum must be found for the number of the applied descrip-
tors. On the one hand, the number must be as small as
possible for computational reasons; on the other hand, the
descriptors must feature clearly the differences in molecular
structures. In total 28 descriptors were determined for 28
different atom types and are summarized in Table 1.
Additionally, the numbers of representatives of these atom
types found in a data base of about 40 000 molecules9 with
up to 100 heavy atoms are indicated. Atom types are derived
from element number, hybridization state, and number of
bonded hydrogen atoms. As given in Table 1, nine different
atom types were defined for the 526 565 carbon atoms which
were available for the prediction of13C NMR chemical shifts
in total. In some cases, different atoms were summarized

into one type if they only differ in the number of bonded
hydrogen atoms. This was necessary since the number of
the representatives would have been too small, for example
in the case of olefinic carbons with one or two hydrogen
atoms (type 6), for sp2 hybridized nitrogen (type 13), and
for sp3 hybridized phosphorus (type 20) and sulfur (type 22).
Two further descriptors were introduced in order to obtain
a complete description. One descriptor holds the number of
all hydrogen atoms located in the individual sphere (type
29). In order to consider the influence on the13C NMR
chemical shift caused by the formation of rings, a second
sum descriptor holds the number of ring closures (type 30).
Two different possibilities have to be distinguished: If the
ring is closed within one sphere the descriptor increased by
two. That is the case in odd-numbered rings (3, 5, ..., 2n +
1 atoms with nε Ν), whereas in even-numbered rings (4, 6,
..., 2n atoms withn ε Ν) the ring is closed over two spheres.
In this case the descriptor increased by one for both spheres
affected. In the example visualized in Figure 1, the five-
membered ring is closed between carbons C-2 and C-3 within
the sphere II. In contrast the six-membered ring must be
closed between carbons C-4 and C-6, both in sphere II, and
carbon C-5 in sphere III.

The chemical environments of the carbons are described
by sorting the atoms in spheres as given in Figure 1 and
counting the occurrence of every atom type in each sphere.
As shown in Figure 1, five spheres (I to V) are formed for
every carbon. All atoms in further distances are projected in
an additional “sum sphere” (∑). Consequently, 30 numbers
are necessary to describe one sphere, and 180 numbers are
necessary for the complete description of the environment
of an individual carbon. However, this description is only
based on number, kind, and distances of the substituents,
which is not sufficient. In addition to this nonspecific
enumeration, the descriptors are extended by a so-called “π-
contact area”, in order to take the special importance of
conjugatedπ-electronic systems into consideration. Two
atoms are in “π-contact” if a conjugatedπ-electronic system
exists from at least one neighbor of the first atom to one
neighbor of the other atom. The two atoms themselves are
not taken into consideration for this parameter since their
belonging to the conjugated system is given by their atom
type. Therefore, by description of the environment of carbon
C-7a in Figure 1 (focus), the double bonds in the side-chain
must not be considered asπ-contact, since they do not belong
to a conjugatedπ-electronic system that includes one
neighbor of the focused carbon. Otherwise, two sp3-hybrid-
ized carbon atoms have to be considered here. The carbons
C-3 and C-6 are neighbors of the conjugatedπ-electronic
system (C3adC4-C5dO) just as the observed carbon C-7a.
In Figure 1 the entireπ-contact area of the carbon C-7a is
shown as shaded region. The molecular structure descriptors
are extended by a second set of 30 numbers for each sphere
using the atom types and sum parameters described above
in Table 1. But in contrast to the general count in the first
set only the atoms being inπ-contact with the focused carbon
were considered now. Consequently, for each sphere two
sets of descriptors result for the encoding of the environment.
This is shown in Figure 2. The structure of the descriptors
for the calculation of the chemical shift of an individual
carbon is represented schematically for the first sphere on
the top and for all spheres in the middle of Figure 2.
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EXPERIMENTAL SECTION

A total of 40 000 molecules were available for the
calculations. The 526 565 carbons with well-known13C
NMR chemical shifts and molecular structure assignments9

were distinguished the nine mentioned atom types (Table
2). All chemical shifts were estimated in deuterated chlo-
roform (CDCl3) or in carbontetrachloride (CCl4) and refer
to tetramethylsilane (TMS) as internal standard. With this,
solvent effects were excluded as far as possible. Stereo-
chemical information was not available for the given
molecules. The environment of every individual carbon atom
was encoded with the descriptors from Table 1. Three
hundred sixty descriptors were used as input vector for the
neural networks, whereas the individual13C NMR chemical
shift value represents the output. For each of the nine atom
types representing a carbon atom an individual neural
network was constructed and trained using back-propagation
of errors.40 The amount of available molecules was randomly
subdivided into three sets. Ninety percent of data was used
for the training of the neural networks. During the training
process the percentage of data was increased stepwise up to
90% maximum. A second data set contained 7% of the
available data for monitoring. The training and monitoring
data sets were used simultaneously. To avoid “overtraining”,
the iterative training process was stopped if the deviation
for the monitoring data set increased again. The hyperbolic
tangent (tanh) was found to give best results as a transfer
function. The number of hidden neurons was optimized to
give the lowest error for the monitoring set of data. Finally,
the third data set of 3% randomly selected molecules was
used as an independent set for testing the trained networks.

The PC program C_shift41 which included the trained
neural networks and a simply manageable structure-editor

for the structure input was written in C++ for Windows
95/98/NT.

RESULTS AND DISCUSSION

In Figure 2 the architecture of neural networks used here
is shown schematically. While the number of input and
output units was fixed, the number of the hidden neurons
had to be determined experimentally. The best results were
achieved with a number of 5-20 hidden neurons, depending
on the carbon atom type. In Table 2 the descriptions are
compiled for the nine different neural networks. The results
achieved with these nets for the training and testing data
sets are also given in the form of statistical information,
respectively. It is shown that a mean deviation of 1.79 ppm
and a standard deviation of 2.10 ppm resulted for the more
than 15 000 carbons in the test data sets. The accuracy of
these calculations is much better in comparison to systems
based on fixed increments, especially if complex structures
are investigated. In Figure 3 the correlation between the
computed and the experimental chemical shift values are
shown for all nine carbon atom types obtained from the test
data sets. The appropriate correlation coefficients are given
in Table 2.

On closer examination of these results it is striking that
the largest deviations were obtained for the sp-hybridized
carbons (standard deviation of 3.8 ppm for type 7) and for
carbons with sp2 hybridization (standard deviations of 3.7
and 3.6 ppm for types 5 and 6), respectively. For triple
bonded carbons the number of examples was relatively small.
That causes the higher uncertainty in this calculation.

Furthermore one has to note that all effects influencing
the chemical shifts through space were not considered here.
Therefore comparable carbons in different stereoisomers do
not become distinguishable through their different spatial
environments. It is well-known that the different arrange-
ments of substituents either in theE- or in theZ-direction
can influence the chemical shift of the olefinic carbons up
to 5 ppm. Influences in this order of magnitude were also
observed in different configurational and conformational
isomers caused by the dissimilar spatial arrangements of their
substituents. Furthermore, one observes an increase of the
uncertainty for sp3 hybridized carbons with an increasing
number of non-hydrogen substituents. Here, the standard
deviation increases from 1.3 ppm for methyl group carbons
up to 3.4 ppm for the quaternary carbons (Table 2). This is
expected, since the chemical shift of a methyl group with
three fixed substituents in the first sphere is much easier to
determine than the chemical shift of a quaternary carbon
where four different substituents can interact in the first
sphere already.

As already mentioned, the influences of the substituents
on the chemical shifts depend on their distances to the
observed carbon and on its affiliation to a conjugated
π-system. This knowledge can also be obtained analyzing
the weights of the trained neural networks. Figure 4 shows
the sensitivities of the input units of three different neural
networks, subdivided in the six spheres and the types of
covalent bonds. These values were determined for every input
unit, by variation of their inputs, while all other inputs stay
constant at zero. The sensitivity of the selected input is given
by the range detected at the output. In Figure 4 the sums of

Table 1: Atom Types (1-28) and “Sum-Types” (29-30) Defined
for Describing Atom Environments and Their Frequencies in the
Data Set

ID atom type frequency of atoms of this type

1 〉C〈 19 527
2 〉CH- 49 556
3 -CH2- 116 175
4 -CH3 73 724
5 )C〈 50 711
6 )CH-/)CH2 27 556
7 tC-/tCH/)C) 3793
8 ) 〉C- (aryl) 68 416
9 ) 〉CH (aryl) 117 107

10 〉N- 9876
11 -NH- 9115
12 -NH2 3521
13 )N-/)NH 7427
14 tN 2053
15 -NO2 2688
16 ) 〉N (aryl) 3743
17 -O- 31 641
18 -OH 20 626
19 )O 39 259
20 〉P-/-PH-/-PH2 383
21 〉PO- 1053
22 -S-/-SH 4146
23 )S 1214
24 〉SO2 1789
25 -F 3613
26 -Cl 9585
27 -Br 2718
28 -I 603
29 sum of all hydrogen atoms bond in this sphere
30 sum of all ring closures in this sphere
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the sensitivities for 30 input neurons for every sphere and
every bonding type is shown for three different carbon atom
types, respectively. Methyl groups (Figure 4a) shown a fast
decrease of the influence of substituents with increasing
sphere number. For all atoms beyond the third sphere the
influence is low at all. This is in accordance with the
knowledge of the substituents induced shifts. In contrast to
this the atoms withπ-contact show distinctly smaller
influences. A significant increase of the sensitivity against
atoms with π-contact was observable for the double-
substituted sp2 hybridized carbons (Figure 4b). Since most
of the conjugated systems do go beyond the second sphere,
a strong decrease was observed after this sphere. Finally the
influence of π-conjugated systems can be seen clearly in
aromatic systems (Figure 4c). The sensitivity forπ-bonded
atoms is constantly high over the first three spheres in order
to decrease slowly behind the third sphere. Only in the first

sphere was observed a smaller influence in comparison to
the sum of all substituents.

To test the capability of the method for the determination
of 13C NMR chemical shifts, the well-known epothilone A
was chosen as an example (Figure 5). Whereas the structure
and the NMR spectra of this natural cytotoxic agent is
described in detail,42 this molecule was not included into
the database9 and is therefore used for a comparative
determination. Consequently, epothilone A was also not a
part of the training or testing data set of the neural networks.
In Table 3 all experimentally determined13C NMR chemical
shifts42 are listed as well as the values calculated by use of
the neural networks41 and the values predicted from a
database after spherical coding of all carbons with the HOSE
code. Experimental chemical shifts were only available for
determination in DMSO. So, the agreements between
experimental and computed values were not as precise as

Table 2: Number of Hidden Neurons, Frequencies of Atom Types (1-9), Correlation Coefficients, Standard Deviations (in ppm), and Mean
Deviations (in ppm) for the Training and Test Data Sets of the Nine Different Carbon Atom Types

training and monitoring data test data

ID atom type
no. hidden
neurons count

corr
coeff

std
[ppm]

m.d.
[ppm] count

corr
coeff

std
[ppm]

m.d.
[ppm]

1 〉C〈 10 18 984 0.995 1.83 1.71 543 0.983 3.42 2.87
2 〉CH- 10 48 032 0.984 2.37 2.44 1542 0.984 2.39 2.47
3 -CH2- 20 112 639 0.982 1.85 1.51 3536 0.985 2.65 1.39
4 -CH3 20 71 547 0.989 1.47 1.16 2177 0.988 1.30 1.01
5 )C〈 10 49 139 0.989 2.71 2.71 1518 0.981 3.68 2.72
6 )CH-/)CH2 10 26 691 0.959 3.78 3.28 865 0.966 3.60 3.46
7 tC-/tCH/)C) 5 3675 0.995 1.99 2.18 118 0.988 3.80 2.96
8 ) 〉C- (aryl) 20 66 433 0.982 1.88 2.02 1983 0.981 1.72 1.84
9 ) 〉CH (aryl) 20 113 655 0.971 1.57 1.13 3452 0.963 1.81 1.35
all 510 795 0.981 1.97 1.75 15 716 0.979 2.10 1.79

Figure 2. Schema of a three layer neural network for calculating chemical shifts. Sixty numbers divided in two sets result as input for the
individual spheres of the environment, respectively. Thirty numbers were used for all substituents (all), and the second set of 30 numbers
hold the count of the atoms in theπ-contact areas (π). In total 360 input values were required for the five individual spheres and the
additional sum sphere. The number of hidden neurons varied between 5 and 20. The single output neuron predicts the chemical shift of the
observed carbon atom.
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expected. However, this restriction concerned all determi-
nation procedures uniformly. The standard deviations found

here were 2.5 ppm for the neural networks and 2.4 ppm for
the determination using the HOSE code description. There-

Figure 3. Correlation of chemical shifts of carbons from test data sets determined by use of the data base (x-axis) and by neural networks
(y-axis). The results are shown for the nine different types of carbon atoms. The numbering of the diagrams is identical to the ID used in
Tables 1 and 2. All data are given in ppm with respect to TMS. For the correlation coefficients and other statistical results look at Table
2.

Figure 4. Sum of the sensitivity of the input-units depending on spheres and the types of the covalent bonds for the neural networks
trained (a) for methyl carbons (atom type 4), (b) for olefinic carbons (atom type 5), and (c) for aromatic carbons (atom type 8).
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fore, the results are of a comparable quality. But the
advantage of the neural network approach was its drastically
shorter computation time. The result was computed 1000
times faster compared to the HOSE code based determination
for which the entire database had to be searched. The
chemical shifts determined with the increments show a
clearly larger deviation (3.8 ppm), as expected. A more
detailed look reveals the largest deviations for the adjacent
carbons to the epozid (C-11 to C-14), the carbons included
in the conjugatedπ-system of the five-membered ring (C-
16 to C-20) and for the methyl groups (C-21 to C-27).
Obviously all three methods have difficulties with the
conjugatedπ-system in the heterocyclic ring. While the
adjacent carbons to the epoxid were computed quite precisely
with the database, relatively large deviations are observed
here for the results obtained with the neural networks. This
could be caused by stereochemical influences in the high-
flexible alicyclic part of the molecule.

CONCLUSIONS

Artificial neural networks offer a fast and accurate
possibility to calculate13C NMR chemical shifts of organic
compounds. While the method has an essentially lower
standard deviation than increment methods, the computation
time is 1000 times faster than using comparable accurate
database predictions of chemical shifts. This makes neural
networks ideal for screening results of stucture generators
or checking the entries of a database. If a large number of
13C NMR spectra has to be predicted or a fast and easy check
of a structure is necessary, this approach is a very good
opportunity. Moreover the large amount of disk space for
saving the database or long time for loading data from
external computers are no longer necessary. It would also
be possible to perform the training of the network interac-
tively, so that every scientist could create a network
specialized in the groups of substances he or she is dealing
with.
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(42) Höfle, G.; Bedorf, N.; Steinmetz, H.; Reichenback, H.; Gerth, K.
Epothilon A and B - Novel 16-membered macrolides with cytotoxic
activity: Isolation, crystal structure, and conformation in solution.
Angew. Chem. Int. Ed. Engl.1996, 35, 1567-1569.

CI000021C

1176 J. Chem. Inf. Comput. Sci., Vol. 40, No. 5, 2000 MEILER ET AL.


