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ABSTRACT Protein–small molecule docking
algorithms provide a means to model the struc-
ture of protein–small molecule complexes in struc-
tural detail and play an important role in drug
development. In recent years the necessity of sim-
ulating protein side-chain flexibility for an accu-
rate prediction of the protein–small molecule inter-
faces has become apparent, and an increasing
number of docking algorithms probe different ap-
proaches to include protein flexibility. Here we de-
scribe a new method for docking small molecules
into protein binding sites employing a Monte
Carlo minimization procedure in which the rigid
body position and orientation of the small mole-
cule and the protein side-chain conformations
are optimized simultaneously. The energy function
comprises van der Waals (VDW) interactions, an
implicit solvation model, an explicit orientation
hydrogen bonding potential, and an electrostatics
model. In an evaluation of the scoring function
the computed energy correlated with experimen-
tal small molecule binding energy with a correla-
tion coefficient of 0.63 across a diverse set of 229
protein– small molecule complexes. The docking
method produced lowest energy models with a
root mean square deviation (RMSD) smaller than
2 Å in 71 out of 100 protein–small molecule crystal
structure complexes (self-docking). In cross-docking
calculations in which both protein side-chain and
small molecule internal degrees of freedom were
varied the lowest energy predictions had RMSDs
less than 2 Å in 14 of 20 test cases. Proteins
2006;65:538–548. VVC 2006 Wiley-Liss, Inc.
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INTRODUCTION

Protein–small molecule (referred to as ‘‘ligand’’ in
what follows) interactions play central roles in numer-
ous basic processes in life, such as enzyme catalysis,
activation by naturally occurring ligands, and inhibition
by human-designed drugs. Thus our capability of model-
ing such interactions at atomic resolution is crucial to
enhance our understanding of biochemistry.

A large number of docking programs have been devel-
oped in the last 20 years based on a variety of search
algorithms.1,2 The use of such programs in conjunction
with one or more scoring functions to evaluate and rank
potential ligands from chemical collections is a standard
step in virtual drug screening. While several successful
applications of this methodology have been described in
recent publications,3,4 frequently protein flexibility is
neglected.5 While this approach is suitable for rapid vir-
tual screening, inclusion of protein flexibility is needed if
the protein–ligand interface is to be modeled in atomic
detail. Side-chain conformational changes frequently
occur upon ligand binding. Hence side-chain coordinates
taken from a complex with a different ligand, an unbound
structure, or a homology model can be inaccurate.

Docking programs seek to identify the lowest free
energy pose of the ligand in the protein binding site. In
screening the goal is to identify the ligand with the
highest binding affinity.5 Currently, docking and screen-
ing appear to be best carried out with different methods:
DOCK,6 AUTODOCK,7,8 FLEXX,9 and GOLD10 are widely
used docking programs.4,5,7,11,12

A wide variety of empirical scoring functions have been
used for virtual screening, the best of which include X-
SCORE,13 DRUGSCORE,14 CHEMSCORE,15,16 and PLP.17

The different aims in docking and screening justify usage
of different scoring methods. However, because both
searches are driven by the same biophysics, a method
which mimics nature should perform well in both high-re-
solution docking and ranking in screening.

In recent years, several docking algorithms have been
reported that include protein flexibility. SLIDE18 cap-
tures small side-chain motions without rotamer changes
and inclusion of side-chain flexibility in ICM19–21 was
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shown to improve docking for protein kinases.22 FDS,23

SKELGEN,24 and GLIDE25 are most similar to our
approach in using rotamer libraries to represent side-
chain flexibility. Finally, QXP26 allows for small protein
structural changes during an energy minimization and
FLEXE27 docks small molecules into ensembles of pro-
tein structures that represent protein flexibility.
ROSETTADOCK is a protein–protein docking algo-

rithm that starts with a low-resolution search followed
by a high-resolution refinement stage in which side-
chain and rigid body degrees of freedom are optimized
simultaneously using a Monte Carlo minimization proto-
col.28 The performance of ROSETTADOCK was recently
improved by introducing a gradient-based minimization
step during the cycling between rotamers to allow effi-
cient sampling of off rotamer conformations.29 While the
algorithm was already reasonably successful in earlier
CAPRI experiments,30 with the improved treatment of
side-chain flexibility predictions of unprecedented accu-
racy were made in the recent CAPRI experiment.31

In this work, we extend the ROSETTADOCK approach
to protein–ligand docking. Full side-chain flexibility is
achieved by extending the repacking methodology intro-
duced in ROSETTADESIGN32–35 to repack protein–li-
gand interfaces. We report the performance of the method
in extensive self-docking and cross-docking benchmarks.
In the self-docking benchmark, ligand conformation and
protein backbone remain unaltered in order to evaluate
the ability of our method to simultaneously optimize pro-
tein side-chain degrees of freedom and ligand orienta-
tion. In the second cross-docking benchmark, however,
ligand and backbone flexibility are included to test the
capabilities of the method thoroughly. Ligand flexibility
is represented by a conformational ensemble excluding
the native bound conformation. Backbone flexibility was
taken into account by using multiple crystal structures
of the proteins. We also evaluate the ability of our
energy function to reproduce the experimental binding
energies of a large set of protein–ligand complexes
obtained from the ligand–protein database (LPDB).36

MATERIALS AND METHODS

The algorithms are written in Cþþ and implemented
in the ROSETTA package as ROSETTALIGAND mode,
which can be combined with ROSETTADOCK and
ROSETTADESIGN.

Atom Types

To allow modeling of most organic molecules, including
protein cofactors and drugs, as well as frequently occur-
ring metal ions in proteins the atoms and ions F, Cl, Br,
I, P, Zn2þ, Fe2þ, Fe3þ, Mg2þ, Ca2þ, Naþ, Kþ were intro-
duced. The parameters for modeling VDW interactions
were taken from the CHARMM27 force field for the halo-
gen atoms and P and from the MM3 force field for the
metal ions. The volumes and free energies as necessary
to model solvation according to Lazaridis–Karplus37 were

estimated from the atom/ion radii and similarities to the
classical atom types that occur in proteins (Table S1).

Docking Monte Carlo Minimization Protocol

Focus was not put on the actual identification of
potential binding sites for small molecules because a
large number of algorithms are available for this pur-
pose.5,11 Rather, the exact prediction of the protein con-
formation when binding the ligand was the objective of
this work. Here we believe lie the shortcomings of many
of the currently used docking tools for ligands and here
the sampling of protein degrees of freedom can add most
to the field.

The Monte Carlo minimization protocol (cf. Fig. 1)
starts from a random starting position and orientation
of the ligand in the binding site of the protein. The
ligand center of mass was placed randomly in a cube of
(10 Å)3, allowing complete reorientation of the ligand.
Each Monte Carlo minimization cycle consists of the fol-
lowing three steps: (1) The position of the ligand is per-
turbed by random translations of mean 0.1 Å in each
direction and by random rotations of mean 0.058 around

Fig. 1. Flow chart diagram of the high-resolution docking protocol.
First the ligand is placed in a random position and orientation into the
binding site of interest, requiring only that the backbone of the protein
and the ligand non-hydrogen atoms do not clash. Fifty cycles of the
Monte Carlo minimization protocol including small perturbations of the
ligand pose, side-chain repacking, and gradient minimization as
described in the methods section are carried out. This protocol is
repeated N times. N is between 1000 and 5000 depending on the size
of the ligand, its flexibility (and therefore the size of the conformational
ligand ensemble), and the binding site.
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each axis; (2) side-chain conformations are repacked
using either rotamer trials or a full combinatorial search
as described below; (3) the rigid body orientation and
side-chain v angles of the ligand are optimized using the
gradient based Davidson–Fletcher–Powell algorithm.
The move (steps 1–3) is accepted based on the difference
of staring and final energy according to the standard
Metropolis criterion probability P ¼ min{1,exp[� (Efinal

� Estart/kT]} with kT set to 2 kcal according to the
Rosetta energy function. The move is always accepted if
the energy decreases, if the energy increases the accep-
tance probability decreases; because minimization is car-
ried out at each step each move consists of a transition
between local minima on the free energy landscape.
Each docking trajectory consists of 50 of these Monte
Carlo minimization cycles. No simulated annealing was
carried out. Between 1000 and 5000 trajectories are
computed for each docking experiment.

Rotamer Trials and Side-Chain Repacking

A backbone-dependent rotamer library (http://dun-
brack.fccc.edu/bbdep)38,39 supplemented with additional
rotamers for the side-chain dihedral angles v1 and v2
was used in all calculations. The side-chain optimization
algorithms were previously described28 except that the
total energy was modified to include all intraprotein
interactions and protein–ligand interactions. After most
steps side-chain conformations were optimized by suc-
cessively substituting each rotamer at each position and
using quasi-Newton minimization to refine their torsion
angles (rotamer trials with minimization); a full, combi-
natorial rotamer optimization was performed only once
every eight cycles.

Force Field

The force field describing the interactions between
ligand and protein is comprised of (1) a standard 12–6
Lennard Jones potential to model attractive interactions
(E < 0) with van der Waals radii and well depths from
the CHARMM27 parameter set; (2) a repulsive term
that connects in amplitude and slope with the 12–6
potential at E ¼ 0 and then ramps linearly until the two
atoms are 0 Å apart (this is less repulsive than a 12–6
potential and compensates to some extent for the use of
a fixed backbone and rotamer set); (3) a solvation term
similar to the Lazaridis–Karplus implicit solvation
model37 for proteins; (4) an explicit hydrogen bonding
potential40; (5) a Coulomb model with a distance-depend-
ent dielectric constant41 using partial charges from the
CHARMM27 force field.41–43 The partial charges inside
the ligand were linearly scaled to reproduce the total
charge of the small molecule. This rather simple model
is pairwise additive which allows rapid computation.
The utilized force field parameters are summarized in
Table I. A generalized Born model was also tested, how-
ever results did not profit from its introduction while
the computation time increased significantly. Inside the
protein the electrostatics is represented using a pair

potential (6) derived from the protein data bank (PDB)
statistics.44 Backbone-dependent internal free energies
(7) of the rotamers are estimated from PDB statis-
tics.33,45

Weights

A database of 100 native protein–ligand complexes
was compiled for testing the method. The weights for
linearly combining the energy terms to build the com-
posite energy function were initially taken from the pro-
tein force field and were fitted by maximizing the corre-
lation between the composite energy and the square root
of the RMSD in Å for sets of 1000 randomly generated
docking poses as well as 50 native-close poses for each of
the 100 complexes. The weights do not change signifi-
cantly when different subsets of 20 complexes are used
in this fitting procedure. Since the resulting weights are
very close to the original protein weights, they are ro-
bust to changes in the composition of the training data-
set, and were trained on random poses rather than
docked models. We assume them to be sufficiently inde-
pendent from the dataset to be trusted as independent.
The protein–protein and protein–ligand force fields are
identical except for the replacement of the intra-protein
pair potential (6) with the Coulomb energy (5) in the
protein–ligand interface. The weights are encouragingly
similar to the standard ROSETTA protein forces, sug-
gesting that the underlying physical chemistry is mod-
eled reasonably well.

Ligand Flexibility

Ligands were represented as a set of discrete confor-
mations. To generate these conformations, first all tor-
sional degrees of freedom in the ligand were identified.
For each of these torsion angles short list of likely con-
formations was compiled from atom type and hybridiza-
tion state of the linked atoms. For a dihedral angle
between two sp3 hybridized atoms (e.g., ��CH2��CH<),
three states — 1808, 608, and �608 — were considered;
for a torsion angle between two sp2 hybridized atoms

TABLE I. Comparison of the Weights as Determined
for Ligand Binding Sites in Proteins with the
Standard Weights Used for Proteins Only52

Ligand Standard

LJ-atractive 0.80 0.80
LJ-repulsive 0.60 0.73
Solvation 0.50 0.52
Hydrogen bonding 1.20 1.39
Pair energy 0.50 0.27
Rotamer probability 0.32 0.32
Phi psi probability 0.32 0.41
LJ-atractive (ligand) 0.80 N/A
LJ-repulsive (ligand) 0.60 N/A
Solvation (ligand) 0.50 N/A
Hydrogen bonding (ligand) 1.20 N/A
Electrostatics (ligand) 0.25 N/A
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(e.g., ��CH¼¼CH��) two states — 1808 and 08 — were
considered; for all other combinations 12 states (1808,
1508, . . . , �1508) were considered. To build a ligand con-
formation, each torsion angle was put in one of the con-
sidered states. Conformations with internal clashes of
ligand atoms were not considered. The conformation of
closed ring systems was not altered. No internal ligand
energy was evaluated and no energy minimization was
applied.
An ensemble of ligands was built using the following

protocol: (1) a random non-clashing conformation was
generated and accepted as first member of the ensemble;
(2) 10 new random conformations were generated and
their RMSD to all accepted members of the ensemble was
evaluated; (3) the conformation with the largest RMSD
was added to the accepted set of conformations. Steps (2)
and (3) were repeated until 10 conformations were
accepted into the ensemble. In step (2) only conformations
with a RMSD larger 1 Å to all accepted conformations
were considered. If no such conformation could be built,
the algorithm was stopped and the conformational en-
semble for this particular ligand was left incomplete.
This procedure ensures that the ensembles spun a

maximal range of the conformational space. The mini-
mal RMSD in the conformational ensemble to the crystal
structure conformation was 0.43 Å on average (Table S2).
Hence this procedure samples the ligand conformational
space sufficiently dense for these examples. Larger
ligands will require additional sampling. The sampling
of ligand conformations by choosing local low energy tor-
sion angles resembles the sampling of protein side-chain
conformations by a rotamer search.
The crystal structures of protein–ligand complexes

were obtained from the PDB (http://www.rcsb.org/
pdb/).46,47 Additional protein chains that do not interact
with the ligand, the binding site water molecules, and
additional ligands in alternative binding sites, were
removed prior to calculation. Hydrogen atoms were added
using standard bond lengths and bond angles. sp3-
Nitrogen atoms were generally assumed to be proto-
nated and positively charged; carboxyl groups were
assumed deprotonated and negatively charged. Metal
ions, sulfate, and phosphate ions were assumed to carry
their net charge. The assigned bond states and charges
for all ligands were checked by visual inspection.
The calculations were performed on a 32-node Linux

personal computer (PC) cluster each with two Intel Pen-
tium 4 processors running at 1.9 GHz and 512 GB mem-
ory. Depending on the size of the protein–ligand com-
plex, the computation time was between 5 and 10 min
per model on one processor. Building 500 models each
for 10 ligand conformations on the cluster took approxi-
mately 4 h.

RESULTS AND DISCUSSION

The major focus of this work is to adapt ROSETTA-
DOCK to simultaneously optimize side-chain and rigid
body degrees of freedom in protein–ligand interfaces.

The computer program ROSETTA hosts the fundamen-
tal protein structure prediction, docking, and design
algorithms for proteins as used throughout this work.
The program was expanded and modified to make it ca-
pable of handling small organic molecules. This com-
prised the inclusion of all relevant atom types for model-
ing organic molecules as well as metals, the modification
of the docking protocol to cope with ligands, and the ad-
aptation of the force field.

Docking

The docking protocol is illustrated in Figure 1 and
was derived from the ROSETTADOCK protocol for protein–
protein docking.28 In the first experiment the ability of
our approach to model protein conformational changes
rather than ligand flexibility was evaluated. The ligand
was kept rigid in its bound conformation and a single
rigid protein backbone was used. All amino acid side-
chains in the ligand binding site as well as in the second
shell were allowed to alter their conformation. The dis-
crete set of conformations allowed for these side-chains
was taken from Dunbrack’s updated rotamer library
(http://dunbrack.fccc.edu/bbdep).38

For a database of 100 native protein–ligand com-
plexes, 5000 models were generated as discussed in the
methods section. In 71 of 100 cases the lowest energy
model had an RMSD smaller than 2 Å, indicating that
the correct ligand pose was not only sampled but also
detected based on its low energy (Table II, Fig. S1, and
Fig. S2). For 18 additional cases, at least one of the
10 lowest energy models had an RMSD smaller than
2 Å. For 11 protein–ligand complexes no low energy pose
had an RMSD smaller 2 Å. In most of these cases the
native complex is not recognized as a particularly low
energy pose even after minimization.

The success rate of the self-docking experiments, 71%
to 80%, is slightly below the best rates reported for other
methods discriminating near-native from non-native
models with ranges from 80% to 90%.5 However, one has
to keep in mind that the protein side-chain structural
space is sampled in this test together with the ligand
pose, but the ligand conformational space is not. Hence
it is difficult to compare the actual sizes of the search
spaces. While a RMSD < 2 Å is counted as success in
our experiment as well as in the literature,5 in our case
the RMSD includes binding site side-chains as well as
hydrogen atoms and is therefore more sensitive to struc-
tural changes of the protein and ligand. In some cases,
reported success rates refer to scoring of existing ensem-
bles of models enriched with low RMSD models, which
makes recognition much easier.5 GLIDE, GOLD, and
ICM were recently compared on a different, more drug-
like benchmark set with success rates of 61%, 48%, and
45%, respectively.11

Cross-Docking

This experiment is designed to mimic the situation in
drug discovery where a crystal structure of the protein
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with a ligand bound in the binding site is frequently
known. In the course of developing inhibitors the bind-
ing of different ligands to the same protein needs to be
evaluated accounting for potential changes in the pro-
tein side-chain or backbone structure.
Ten proteins were selected that were crystallized with

two different ligands and each ligand was docked into
the backbone of the original crystal structure (self-dock-
ing) and the structure determined with the other ligand
(cross-docking). Ligand flexibility was introduced by gen-
erating diverse conformational ensembles with up to 10
ligand conformations by systematically altering torsion
angles (see Methods section). Two hundred fifty models
were obtained for each of the ligand conformations in
both protein structures. For 14 of the 20 cross-docking
cases and 16 out of 20 self-docking cases, the lowest
energy model had an RMSD smaller than 2 Å. The aver-

age RMSD of the successful cross-docking models (1.3 Å)
was somewhat higher than that of the self-docking
experiment (0.8 Å). When comparing the results for the
rigid ligand with flexible ligand docking, the success
rate decreases from 35 to 30 out of 40 examples. The av-
erage RMSD of the lowest energy models in the success-
ful runs increases from 0.7 Å to 1.0 Å. Figure 2 and
Table II summarize these results.

The modeling of side-chain conformations is of particu-
lar interest for our docking algorithm. In Figure 3 we ana-
lyze side-chain conformations in four representative low-
est scoring models from the cross-docking benchmark in
detail. Frequently, side-chain conformations change little
in structure of the same protein crystallized with two dif-
ferent ligands. In the immunoglobulin test case [Fig. 3(a)],
the ligand binding interface is formed by several aromatic
amino acids whose confirmations change little upon

Fig. 2. Results of cross-docking benchmark of pairs of complexes A/B: (a) 1aq1/1dm2, (b) 1dbj/2dbl,
(c) 1dwc/1dwd, (d) 1fm9/2prg, (e) 1p8d/1pq6, (f) 1p8d/1pqc, (g) 1ppc/1pph, (h) 1pq6/1pqc, (i) 2ctc/7cpa,
(j) 4tim/6tim: The diagrams show from the left to the right ligand A docked in protein A, ligand A docked in
protein B, ligand B docked in protein A, and ligand B docked in protein B. The ROSETTALIGAND binding
energy is shown on the y-axis and the RMSD in Ånstroms on the x-axis. In all diagrams the energy of the
crystal structure (red diamond), the minimized native structure (orange diamond), the lowest energy model
obtained utilizing the crystal structure conformation of the ligand (dark green diamond), and the lowest
energy model obtained including ligand flexibility (light green diamond) are shown. All other models
obtained from the crystal structure conformation of the ligand are shown as dark blue points and models
obtained including ligand flexibility are marked with light blue points.
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Figure 3.

Figure 2. (Continued.)

543ROSETTALIGAND

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot



exchanging the ligands. The algorithm builds all side-
chains in conformations very close to both crystal struc-
tures in the cross-docking calculations. In two crystal
structures of triosephosphate isomerase [TIM, Fig. 3(b)]
replacing 2-phosphoglycerate with glycerol-3-phosphate

results in a conformational change of one glutamate. This
change is modeled correctly in the cross-docking experi-
ment. The binding pocket of the liver X receptor 1pqc/
1p8d [Fig. 3(c)] is particularly flexible, can accommodate a
variety of different ligands, and is therefore challenging
for cross-docking. Some of the loop regions shift by more
than 1 Å in between the two crystal structures. As a
result, side-chain conformations of amino acids in second-
ary structure elements are frequently predicted with
higher accuracy than in loop regions. For the histidine in
Figure 3(c) a small shift is modeled to allow the formation
of a hydrogen bond while the ability of the algorithm to
capture the conformational change of the phenylalanine is
limited because of the significant shift in the backbone.
Similar results are found for the human nuclear receptor
structures 1fm9/2prq [Fig. 3(d)], in which the conforma-
tional changes of a glutamate and a phenylalanine are pre-
dicted correctly.

Fig. 3. Side-chain conformational changes in cross-docking. Lowest
energy cross-docking results for ligand 2dbl in protein 1dbj (a), ligand
6tim in protein 4tim (b), ligand 1pqc in protein 1pq6 (c), and ligand
1fm9 in protein 2prq (d) are shown (protein backbone rainbow coloring
scheme, amino acid side-chains carbon atoms white, and ligand carbon
atoms green). Selected amino acid side-chain conformations in the
binding site of the protein crystal structures are shown in light blue
(conformation in protein crystal structure obtained used for cross-dock-
ing the ligand) and light red (conformation in crystal structure obtained
with this ligand). While in case (a) all side-chains in both crystal struc-
tures superimpose almost perfectly and therefore no changes need to
be modeled, conformational changes are observed for some side-
chains in (b), (c), and (d) and modeled at different levels of accuracy.

TABLE II. Benchmark Results for Docking Rigid Ligand Conformations to Their Protein Crystal Structures
Including Sampling of Protein Side-Chain Conformations (Self-Docking)

ID PDB RMSD Åa Rank #/Åb ID PDB RMSD Åa Rank #/Åb ID PDB RMSD Åa Rank #/Åb

1 1a07 10.6 99[c]/1.8 35 1epo 0.6 1/0.6 69 1qbt 0.4 1/0.4
2 1a1b 2.5 2/1.4 36 1ets 0.2 1/0.2 70 1qbu 0.5 1/0.5
3 1a1e 0.7 1/0.7 37 1ett 0.6 1/0.6 71 1ql7 0.5 1/0.5
4 1a28 0.3 1/0.3 38 1f0r 2.2 2/2.0 72 1qpe 0.4 1/0.4
5 1a6w 1.1 1/1.1 39 1f0s 0.6 1/0.6 73 1rnt 1.4 1/1.4
6 1a9u 7.4 3/0.7 40 1fax 10.0 2/1.2 74 1sln 0.4 1/0.4
7 1abf1 1.2 1/1.2 41 1fbl 0.6 1/0.6 75 1srg 0.7 1/0.7
8 1abf2 4.1 3/1.8 42 1hiv 0.3 1/0.3 76 1srh 8.4 28/1.7
9 1apu 0.5 1/0.5 43 1hos 0.6 1/0.6 77 1tlp 10.2 5/0.8
10 1b6n 0.7 1/0.7 44 1hpv 1.1 1/1.1 78 1tmn 0.2 1/0.2
11 1b9v 0.8 1/0.8 45 1hsb 3.3 13/0.5 79 1tnh 0.5 1/0.5
12 1bl7 0.8 1/0.8 46 1htf 0.4 1/0.4 80 1uvs 0.6 1/0.6
13 1byg 0.8 1/0.8 47 1htf 0.4 1/0.4 81 1uvt 0.3 1/0.3
14 1c2t 0.6 1/0.6 48 1hvr 0.2 1/0.2 82 1vgc 12.1 2/1.4
15 1c5x 0.6 1/0.6 49 1hyt 0.6 1/0.6 83 1ydr 10.5 8/0.6
16 1c83 4.5 2/1.3 50 1icn 12.6 2/0.5 84 1yds 11.5 6/0.6
17 1cin 6.7 3/0.4 51 1ivc 4.1 42/1.9 85 1ydt 1.2 1/1.2
18 1ckp 0.5 1/0.5 52 1ivd 1.9 1/1.9 86 2aad 1.1 1/1.1
19 1cps 1.4 1/1.4 53 1ivq 0.6 1/0.6 87 2fox 4.4 91/2.9
20 1cqp 2.5 5/0.5 54 1jap 0.5 1/0.5 88 2ifb 3.6 2/0.7
21 1ctt 0.6 1/0.6 55 1lic 0.6 1/0.6 89 2mip1 0.5 1/0.5
22 1d0l 0.4 1/0.4 56 1lyb 0.3 1/0.3 90 2mip2 0.5 1/0.5
23 1d4p 0.4 1/0.4 57 1mmb 0.6 1/0.6 91 2qwk 0.4 1/0.4
24 1dd7 2.9 7/0.7 58 1mnc 0.6 1/0.6 92 2tmn 0.8 1/0.8
25 1dg5 5.3 2/0.9 59 1mts 1.3 1/1.3 93 2ypi 0.8 1/0.8
26 1dhf 0.3 1/0.3 60 1mtw 1.3 1/1.3 94 3cpa 1.5 1/1.5
27 1dmp 0.3 1/0.3 61 1mup 4.6 67/1.6 95 3nos 6.2 2/1.1
28 1dy9 3.0 23/1.7 62 1ngp 0.4 1/0.4 96 4er2 0.4 1/0.4
29 1ejn 0.3 1/0.3 63 1nsd 6.9 10/1.5 97 4lbd 0.5 1/0.5
30 1ela 0.5 1/0.5 64 1ppc 0.5 1/0.5 98 4tpi 0.3 1/0.3
31 1elb 5.1 99c/2.8 65 1pph 0.4 1/0.4 99 5er1 1.0 1/1.0
32 1elc 12.1 99c/2.0 66 1ppl 0.4 1/0.4 100 6cpa 0.6 1/0.6

33 1eld 7.3 25/1.3 67 1pso 0.3 1/0.3 71 Model < 2 Å scores best
34 1ele 2.6 99c/1.4 68 1ptv 0.3 1/0.3 89 Model < 2 Å scores top 10

aRMSD of top scoring decoy in Ångstroms measured over all ligand and all side-chain atoms in the binding site of the protein. RMSDs
smaller 2 Å are displayed in bold letters.
bRank of first decoy with RMSD smaller 2 Å and its RMSD in Ångstroms. Rank 1 is displayed in bold letters. Ranks 2 to 10 are displayed in
italic letters.
cRanks larger than 99 are displayed as 99 in this table.
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Because side-chain flexibility is modeled we observe
only a slight reduction in performance between self-
docking (80% success rate) and cross-docking (70% suc-
cess rate) benchmark. Ferrara and colleagues5 report
cross-docking experiments on two systems, HIV-1 pro-
teases and trypsin, and report small and large deteriora-
tions, respectively. Cross-docking experiments on protein
kinases have been reported for ICM, which also utilizes
Monte Carlo minimization.22 The success rate is �65%
when using the 2 Å RMSD criteria for ligand atoms only.
It is clear that the difficulty of cross-docking calculations
depends critically on the amount of backbone conforma-
tional change and the variety of ligands the binding site
can accommodate. For rigid protein binding sites, one
cross-docking benchmark is reported for FLEXX.48 How-

ever, here a ligand is docked into a list of 2 to 10 other
X-ray structures and only the best result obtained is
reported, which simplifies the test somewhat. Using the
2 Å criterion a success rate of 76% is achieved. More
extensive comparison to previous methods is not possible
because no cross-docking benchmark covering a compa-
rable variety of systems has to our knowledge been pub-
lished. However, in a virtual screening experiment with
10 proteins, McGovern and Shoichet report a decreasing
enrichment of known ligands when going from the holo
(ligand-bound) protein to the apo (ligand-free) protein to
a homology model.49

Comparison of structures of protein–protein and
protein–ligand complexes with the unbound structures
show that about 80% of the side-chain rotamer confor-

TABLE III. Benchmark Results for Docking Flexible Ligand Conformations to Alternative Protein Crystal
Structures Including Sampling of Side-Chain Conformations (Cross-Docking)

Rigid Ligand þ Flexible Side-Chainsb Flexible Ligand þ Flexible Side-Chainsc

Nativea RMSD of
Minimized Starting

Structure in Å
RMSD of Best

Scoring Model in Å

Rank of First
Model with
RMSD < 2 Å

RMSD of Best Scoring
Model in Å

Rank of First Model
with RMSD < 2 Å

1aq1 1dm2 1aq1 1dm2 1aq1 1dm2 1aq1 1dm2 1aq1 1dm2
1aq1 0.42 0.57 1aq1 0.28 2.04 1aq1 1 3 1aq1 0.49 4.59 1aq1 1 27
1dm2 0.44 0.35 1dm2 0.48 0.34 1dm2 1 1 1dm2 0.49 0.57 1dm2 1 1

1dbj 2dbl 1dbj 2dbl 1dbj 2dbl 1dbj 2dbl 1dbj 2dbl
1dbj 1.12 0.94 1dbj 0.99 0.78 1dbj 1 1 1dbj 0.99 0.78 1dbj 1 1
2dbl 0.72 0.47 2dbl 0.72 0.83 2dbl 1 1 2dbl 1.14 1.37 2dbl 1 1

1dwc 1dwd 1dwc 1dwd 1dwc 1dwd 1dwc 1dwd 1dwc 1dwd
1dwc 0.55 0.56 1dwc 0.66 0.59 1dwc 1 1 1dwc 6.28 6.67 1dwc 58 244
1dwd 0.84 0.36 1dwd 0.88 0.30 1dwd 1 1 1dwd 0.79 6.66 1dwd 1 2

1fm9 2prg 1fm9 2prg 1fm9 2prg 1fm9 2prg 1fm9 2prg
1fm9 0.30 1.52 1fm9 0.27 1.56 1fm9 1 1 1fm9 0.55 1.62 1fm9 1 1
2prg 1.03 0.38 2prg 1.10 0.43 2prg 1 1 2prg 1.60 1.71 2prg 1 1

1p8d 1pq6 1p8d 1pq6 1p8d 1pq6 1p8d 1pq6 1p8d 1pq6
1p8d 0.54 1.00 1p8d 0.45 1.64 1p8d 1 1 1p8d 0.64 1.75 1p8d 1 1
1pq6 0.44 0.18 1pq6 0.67 0.39 1pq6 1 1 1pq6 1.11 0.87 1pq6 1 1

1p8d 1pqc 1p8d 1pqc 1p8d 1pqc 1p8d 1pqc 1p8d 1pqc
1p8d 0.54 0.70 1p8d 0.45 1.39 1p8d 1 1 1p8d 0.64 1.98 1p8d 1 1
1pqc 1.82 0.44 1pqc 2.11 0.66 1pqc 7 1 1pqc 3.19 0.56 1pqc 162 1

1ppc 1pph 1ppc 1pph 1ppc 1pph 1ppc 1pph 1ppc 1pph
1ppc 0.26 0.61 1ppc 0.25 0.54 1ppc 1 1 1ppc 2.44 2.45 1ppc 15 27
1pph 0.55 0.62 1pph 0.61 0.60 1pph 1 1 1pph 2.33 0.97 1pph 2 1

1pq6 1pqc 1pq6 1pqc 1pq6 1pqc 1pq6 1pqc 1pq6 1pqc
1pq6 0.18 0.65 1pq6 0.39 3.43 1pq6 1 7 1pq6 0.87 1.66 1pq6 1 1
1pqc 1.72 0.44 1pqc 2.44 0.66 1pqc 12 1 1pqc 1.51 0.56 1pqc 1 1

2ctc 7cpa 2ctc 7cpa 2ctc 7cpa 2ctc 7cpa 2ctc 7cpa
2ctc 0.84 0.37 2ctc 0.68 0.69 2ctc 1 1 2ctc 2.80 2.34 2ctc 2 16
7cpa 1.00 0.76 7cpa 0.86 0.76 7cpa 1 1 7cpa 1.02 0.48 7cpa 1 1

4tim 6tim 4tim 6tim 4tim 6tim 4tim 6tim 4tim 6tim
4tim 0.61 0.32 4tim 0.57 0.26 4tim 1 1 4tim 0.81 1.29 4tim 1 1
6tim 0.42 0.20 6tim 2.67 0.39 6tim 6 1 6tim 1.54 1.48 6tim 1 1

aRMSD of ligand minimized in original and alternative protein crystal structure in Ångstroms. RMSDs smaller 2 Å are displayed in bold
letters.
bRMSD of rigid ligand docked in original and alternative protein crystal structure in Ångstroms and rank of first decoy with RMSD smaller
2 Å. Rank 1 is displayed in bold letters. Ranks 2 to 10 are displayed in italic letters.
cRMSD of flexible ligand docked in original and alternative protein crystal structure in Ångstroms and rank of first decoy with RMSD
smaller 2 Å. Rank 1 is displayed in bold letters. Ranks 2 to 10 are displayed in italic letters.
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mations are retained upon binding.18,29 In our cross-
docking benchmark, 23% of all side-chains in the first
and second shell of the binding site change to a differ-
ent rotamer (Table SII). Hence in real world docking
applications it is advantageous to include input side-
chain conformations in the rotamer library for the
search.29 Although this is an option in ROSETTA, it
was not used here to keep the benchmarks as strict
and unbiased as possible. The Monte Carlo rotamer
search improved the docking results in particular when
side-chain conformational changes occur. Rotamer
search and minimization performed significantly better
than straight minimization from the crystal structure
coordinates, which cannot traverse side-chain torsional
barriers (data not shown).

Binding Free Energy Prediction

Two hundred twenty-nine protein–ligand complexes
taken from the LPDB (http://lpdb.scripps.edu/)36 were
scored using our energy function. To avoid uncorrelated
noise due to minor clashes the Lennard Jones repulsive
term was neglected in the total energy computed. These
energies are plotted in Figure 4 versus the experimental
binding free energies. The overall correlation coefficient
was found to be R ¼ 0.63, the standard deviation is
SD ¼ 2.9 kcal/mol. This agreement did not further
improve upon minimizing of the initial structures in our
force field. However, after minimization the Lennard
Jones repulsive energy can be included without reduc-
tion of the correlation coefficient. As already seen for
protein–protein interfaces,34 the computed ROSETTA
energies are larger than the experimental binding free
energies by a factor of 2.7, at least in part because of
the neglect of entropy decrease associated with binding.
Only CHEMSCORE15,16 achieves a similar correlation

coefficient of R ¼ 0.65 for this set of protein–ligand com-
plexes. The correlation coefficients of all other reported

energy functions were significantly lower.5 This is particu-
larly remarkable because our energy function is in contrast
to CHEMSCORE not specialized to predict binding ener-
gies but for use in docking and design calculations.

Correlation and prediction quality vary largely with
the type of protein: L-arabinose binding proteins (SD ¼
0.90 kcal/mol; R ¼ 0.69, N ¼ 9), hydrolases (SD ¼ 1.82
kcal/mol; R ¼ 0.20; N ¼ 11), mhc’s (SD ¼ 2.18 kcal/mol;
R ¼ 0.18; N ¼ 7), immunoglobines (SD ¼ 2.53 kcal/mol;
R ¼ 0.50; N ¼ 10), aspartic proteases (SD ¼ 2.64 kcal/
mol; R ¼ 0.41; N ¼ 82), serine proteases (SD ¼ 2.68
kcal/mol; R ¼ 0.67; N ¼ 31), transferases (SD ¼
2.79 kcal/mol; R ¼ 0.65; N ¼ 9), oxidoreductases (SD ¼
3.33 kcal/mol; R ¼ 0.33; N ¼ 39), and other (SD ¼ 3.46
kcal/mol; R ¼ 0.56; N ¼ 28). These large differences and
the finding Rserine proteases > Rother > Raspartic proteases >
Roxidoreductases are in agreement with data reported for
most other energy functions.5

CONCLUSIONS

We present a novel approach for modeling protein–
ligand interfaces that allows the parallel optimization of
protein side-chain conformations and ligand transla-
tional and rotational degrees of freedom. We find an
energy function comprised of LJ-attractive and repulsive
interactions, an implicit solvent model, an explicit orien-
tation dependent hydrogen bonding potential, and elec-
trostatics successful in distinguishing low energy from
alternative native conformations in more than 70% of all
docking experiments computed.

Such successful docking runs are frequently accompa-
nied with the formation of a distinct binding funnel (see
Figure 3). The kinetics of binding can be computed from
the dimensions of the aperture to the binding funnels
using the solution of the diffusion equation for asymmet-
ric rigid bodies with orientational constraints.50 The
energy function fails to distinguish native from non-
native conformations only for small molecules with only
a few atoms and hence a very limited number of inter-
actions.

The Monte Carlo minimization procedure used to sam-
ple ligand rotational and translational degrees of free-
dom as well as protein side-chain conformational space
is found to be efficient for sampling all but one case of
the benchmark comprised of 140 self-docking and cross-
docking experiments. Ligand flexibility and protein
backbone degrees of freedom are currently considered
by performing multiple runs from a set of alternate con-
formations.

The algorithm compares well in prediction accuracy
with existing methods in self-docking experiments. This is
with the addition of the degrees of freedom on the protein
side which is a harder test than most extensive bench-
marks recorded so far.The binding energies computed
with the energy function correlate with the experimental
values with a correlation coefficient of R ¼ 0.63. This is
comparable to the currently best energy functions used
for this problem. Our approach has the advantage that
the same function is used for docking and for scoring.

Fig. 4. Correlation between experimental (x-axis) and predicted (y-
axis) binding energy for a set of 229 diverse protein–ligand complexes
taken from the LPDB.36 The overall correlation coefficient is R ¼ 0.63.
While particularly good correlations are obtained for aspartic proteases
and serine proteases, the correlations are worse for hydrolases, mhc’s,
and oxidoreductases. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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Future improvements to the method will include mod-
eling ligand flexibility using gradient minimization
inside the ROSETTA docking procedure. Larger changes
in ligand conformation will be modeled by Monte Carlo
sampling of torsion angles of the ligand in a manner
similar to sidechain rotamers. The protein structure pre-
diction and loop modeling capabilities of ROSETTA51

will be used to model loop flexibility during docking.
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