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SUMMARY

Asmanykeyproteins evade crystallization andremain
too large for nuclear magnetic resonance spectros-
copy, electron paramagnetic resonance (EPR) spec-
troscopy combined with site-directed spin labeling
offers an alternative approach for obtaining structural
information. Such information must be translated into
geometric restraints to be used in computer simula-
tions. Here, distances between spin labels are con-
verted into distance ranges between b carbons by
using a ‘‘motion-on-a-cone’’ model, and a linear-cor-
relation model links spin-label accessibility to the
number of neighboring residues. This approach was
tested on T4-lysozyme and aA-crystallin with the
de novo structure prediction algorithm Rosetta. The
results demonstrate the feasibility of obtaining highly
accurate, atomic-detail models from EPR data by
yielding 1.0 Å and 2.6 Å full-atom models, respec-
tively. Distance restraints between amino acids far
apart in sequence but close in space are most valu-
able for structure determination. The approach can
be extended to other experimental techniques such
as fluorescence spectroscopy, substituted cysteine
accessibility method, or mutational studies.

INTRODUCTION

The accelerated pace of genome sequencing has sparked the

development of rapid structure determination methods and

ambitious proposals for genome-scale structure determination

utilizing primarily X-ray crystallography and nuclear magnetic

resonance (NMR) spectroscopy (Stevens et al., 2001; Berman

et al., 2002; Lesley et al., 2002; Westbrook et al., 2003). However,

it has become clear that static and dynamic structural informa-

tion for a significant subspace of the protein universe continues

to evade these tools. Important examples include the static

structure of membrane proteins (Tusnady et al., 2004), confor-

mationally heterogeneous water-soluble proteins (Haley et al.,

2000), and large protein complexes involved in major cellular

processes (Harrison, 2004). Insight into conformational motions

that mediate function is restricted to proteins amenable to NMR
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spectroscopy or to crystallization in multiple intermediate states.

Furthermore, the absence of representative structures of entire

protein families, whose members often share difficulties in struc-

ture determination, reduces the efficiency and accuracy of com-

parative modeling (Sali, 1998).

A complement of methods with intrinsically lower resolution can

provide insight into these problems. Among them are probe-

based approaches such as electron paramagnetic resonance

(EPR) spectroscopy in combination with site-directed spin label-

ing (SDSL) (Hubbell et al., 1996; Mchaourab et al., 1997; Koteiche

et al., 1998; Perozo et al., 1999; Liu et al., 2001; Brown et al., 2002;

Dong et al., 2005). EPR analysis of spin-labeled proteins results in

a set of structural restraints that describes, in a native-like setting,

local environments as well as aspects of the global fold of the

protein. Spin label accessibility and mobility can be used to deter-

mine secondary structure location and topology (Farahbakhsh

et al., 1992; Altenbach et al., 2005). Distance measurements

between pairs of spin labels in the range from 5–60 Å (Rabenstein

and Shin, 1995; Borbat et al., 2002) reflect the relative packing of

domains and secondary structures. In cases where these param-

eters are obtained in various conformational intermediates of the

protein, they allow for a detailed mapping of structural changes

involved in function (Dong et al., 2005). There are relatively few

limits on the size and environment of the protein, particularly

when compared to X-ray crystallography and NMR spectros-

copy.

Despite the widespread application of SDSL (Fanucci and Ca-

fiso, 2006), the use of EPR restraints for structure determination

has not been systematically explored. A central question is the

number and nature of EPR restraints necessary to obtain a struc-

tural model at a biologically relevant resolution. The most exten-

sive use of spectroscopic data along withcomputational methods

for structure determination is in NMR spectroscopy (Wüthrich,

1986). Typically consisting of distances not greater than 5–6 Å

with upper and lower bounds, the geometric information is

derived from NOE-based experiments. The number of such re-

straints required for the determination of a structure depends

on the range and quality of such restraints, but is generally

assumed to be above 15 restraints per residue (Nederveen

et al., 2005).

Although EPR distance restraints have a longer range than

their NMR counterparts, they are fundamentally less accurate

since they report distances between probes introduced into

the protein sequence. The significant length of the spin label

linking arm implies that the EPR distances will have a rather
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large uncertainty when translated into distances between a or

b carbons unless the conformation of the spin label is known

at every site. Therefore, previous efforts have focused on either

using molecular dynamics simulations to define their trajecto-

ries (Sale et al., 2005) or on determining a library of rotamers

from crystal structures of spin-labeled T4-lysozyme (Langen

et al., 2000). These studies are critical since spin-label confor-

mations are likely stabilized by weak specific interactions with

neighboring amino acid side chain or backbone atoms. How-

ever, such calculations are time and resource intensive and

not practical without a high-resolution structural model of the

protein.

Sparse experimental data, such as EPR restraints, aid compu-

tational protein structure prediction algorithms by restricting the

conformational space that must be considered in order to obtain

the correct structure. For instance, the Rosetta de novo protein

structure prediction algorithm (Simons et al., 1997; Bonneau

et al., 2001a, 2001b; Bradley et al., 2003, 2005a, 2005b; Rohl

et al., 2004) predicts high-resolution (better than 1.5 Å) structures

of proteins with less than 80 amino acids in the absence of

experimental restraints (Bradley et al., 2005b). In combination

with sparse (less than one restraint per amino acid) NMR NOE

distances and/or residual dipolar couplings (Bowers et al.,

2000; Rohl and Baker, 2002; Meiler and Baker, 2005), the struc-

ture of proteins with up to 200 amino acids can be determined to

medium-high resolution (1.5–3.0 Å).

In the present work, Rosetta is combined with sparse EPR

distance restraints and solvent accessibility measures for high-

resolution structure determination of the mostly helical T4-lyso-

zyme (Weaver and Matthews, 1987) and the all b sheet protein

aA-crystallin (Horwitz, 1992, 1993). We address the question of

whether the EPR restraints can restrict the protein conforma-

tional space without assuming an atomic-detail model for the

spin label’s dynamics and without accounting for its context-

dependent specific interactions. Also addressed are the questions

of how many restraints are needed to obtain a high-resolution

structure and what type of EPR restraint is most efficient.

The results demonstrate that sparse EPR restraints derived

from a nonatomic model of the spin label lead Rosetta to high-

resolution structures for both proteins. Also, distance restraints

are more efficient in restricting conformational space than spin

label accessibilities. Further analysis reveals that those between

two amino acids far apart in sequence but close in Euclidian

space are the most valuable.

RESULTS

EPR distance and accessibility data were transformed into struc-

tural restraints as described in Experimental Procedures. Briefly,

distances between spin labels were translated into distances be-

tween b carbons by using a motion-on-a-cone model of the spin

label location relative to the a carbon. The accessibilities of spin

labels were computationally interpreted in terms of the exposed

surface area. The effectiveness of the restraints to aid Rosetta in

the folding process was then evaluated. Because distance re-

straints proved vastly more efficient in preliminary experiments,

accessibility data was not used during modeling. De novo

models were compared to the crystal structure of T4-lysozyme

and a comparative model of aA-crystallin.
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Evaluation of the ‘‘Motion-on-a-Cone’’ Model
for Interpretation of Distance Restraints
The ‘‘motion-on-a-cone’’ model (see Figure 1) yields a predicted

distribution for the difference between the distance separating

the spin labels (dSL) and that separating the two corresponding

b carbons (Cbs; dCb). Comparison of the predicted dSL–dCb dis-

tribution with the dSL–dCb obtained from the T4-lysozyme and

aA-crystallin structures (Figure 1D) demonstrate that they essen-

tially encompass the same range of dSL–dCb and reveals a com-

mon bias in experiment and model for dSL > dCb. The comparison

also reveals that the model over predicts the frequency with

which large (>4 Å) dSL–dCb values occur and underestimates

the frequency with which low (<4 Å) dSL–dCb values occur. How-

ever, the present application depends only on the ability of the

model to predict the appropriate range of values for dSL–dCb;

the frequency with which these values occur is not a part of

the utility of this simple model.

Given a dSL, the ‘‘motion-on-a-cone’’ model provides a re-

straint in the form of a predicted range for dCb. The accuracy of

the range can be evaluated by comparing it to the dCb calculated

from the T4-lysozyme structure and the aA-crystallin compara-

tive model. Practically all calculated dCb lie within the range

predicted by the model (Figures 2C and 2G).

A Linear Regression Relation for Interpretation of
Accessibility Restraints
Analogous to an experimental distance measurement, the exper-

imental accessibility of a spin label (eSL) needs to be translated

into accessible surface areas of the protein structure for use as

a restraint. For this purpose, a consensus linear regression rela-

tion between eSL and the number of Cb atoms within 8 Å of the Cb

of the corresponding amino acid (eCb) was determined from T4-

lysozyme and aA-crystallin structures. The linear relation is given

by eCb = (0.76 � eSL) � 20.87 and has a correlation coefficient of

�0.83 to experimental T4-lysozyme and aA-crystallin data (Fig-

ures 2D and 2H). The strong correlation suggests the simple

method of linearly relating eSL to eCb is a sufficient means for

obtaining a structural restraint from EPR accessibility data.

Influence of EPR Data on De Novo Fold Determination
To avoid the introduction of noise through unconstrained regions

and focus on evaluating the contribution of EPR restraints in

structure prediction, regions in both proteins that were not

probed with spin labels were excluded from the calculations.

For T4-lysozyme, the C-terminal 107 residue helical domain

(amino acids 58–164) was modeled (Figure 2A). For aA-crystallin,

the C-terminal 88 residue b sandwich domain (amino acids 60–

147) was modeled (Figure 2E).

The influence of the experimental EPR restraints on de novo

protein folding with Rosetta was evaluated by building 10,000

models for each protein (1) without the use of experimental

data, (2) with only the use of distance restraints, (3) with only

the use of solvent accessibility restraints, and (4) using both

sets of restraints. The average model quality was monitored by

the root-mean-square deviation (rmsd). The results for both

T4-lysozyme and aA-crystallin follow the same trends: there

is an improvement in the quality of models created with distance

restraints compared to models created without distance re-

straints (Figures 3A and 3B, T4-lysozyme; Figures 3I and 3J,
ts reserved
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aA-crystallin); there is very little to no improvement when acces-

sibility restraints are included (Figures 3A and 3C, T4-lysozyme;

Figures 3I and 3K, aA-crystallin); using accessibility restraints in

conjunction with distance restraints provides little to no improve-

ment over using distance restraints alone (Figures 3B and 3D,

T4-lysozyme; Figures 3J and 3L, aA-crystallin). It is clear from

these analyses that the distance restraints are critical for improv-

ing the rmsd distribution of models, while solvent accessibility

data only marginally improve the quality of water soluble protein

models.

Influence of Spin-Label Placement
on De Novo Fold Determination
Spatial contacts of amino acids that are distant in sequence de-

fine the protein fold best (Baker, 2000; Bonneau et al., 2002).

Figure 1. Rational for Translating dSL into

dCb for Use as a Restraint

(A) Chemical structure of a nitroxide spin-label

side chain with the distance from the Cb atom to

the spin label indicated (Borbat et al., 2002).

(B) Illustration of how the maximum distance from

Cb to spin label, SL, is reduced to an effective dis-

tance, SLeff (depicted by a double line).

(C) dSL is a starting point for the upper estimate of

dCb, and subtracting the effective distance of 6 Å

twice from dSL gives a starting point for the lower

estimate of dCb.

(D) A histogram compares T4-lysozyme crystal

structure (black bars, left y axis, bottom x axis)

and aA-crystallin comparative model (white bars,

left y axis, bottom x axis) dSL–dCb values with

those obtained from the simple cone model (cir-

cles and line, right y axis, top x axis).

However, whereas the sequence separa-

tion (sCb) can be chosen when designing

an EPR experiment, the Euclidean dis-

tance (dCb) is generally unknown. EPR ex-

periments do not provide contact data

but, instead, distances of up to 50 Å.

Thus, the information content (ICb) of an

EPR distance restraint can be defined

as directly proportional to sCb but in-

versely proportional to dCb: ICb �sCb/dCb.

To investigate the influence of spin

label location and resulting ICb on de

novo structure determination, two exper-

iments were designed with subgroups of

all available restraints. First, all restraints

are ranked by ICb to assess their power

in an idealized experiment. Second, all re-

straints are ranked by sCb in order to sim-

ulate the choices the experimentalist can

make when selecting sites for labeling.

Ten thousand models for T4-lysozyme

and aA-crystallin were built that used (1)

the one-third restraints with highest ICb,

(2) the one-third restraints with lowest

ICb, (3) the two-third restraints with high-

est ICb, and (4) the two-third restraints with lowest ICb. The exper-

iment was then repeated using sCb instead of ICb.

Once again, the trends of the results are the same for both

proteins and for both ICb and sCb experiments. (1) Using the

one-third restraints with highest ICb shifts the rmsd distribution

into the same range that is obtained when using all of the avail-

able distance restraints (Figures 3E and 3B, T4-lysozyme; Fig-

ures 3M and 3J, aA-crystallin). (2) Using the one-third restraints

with lowest ICb only slightly shifts the rmsd distribution toward

lower rmsds and is similar to that in the absence of distance

restraints (Figures 3F and 3A, T4-lysozyme; Figures 3N and 3I,

aA-crystallin). (3) There is little shift in the rmsd distribution

when the two-third restraints with highest ICb are used compared

to only one-third (Figures 3G and 3E, T4-lysozyme; Figures 3O

and 3M, aA-crystallin); the extra restraints increase the number
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of lower rmsd models that are created. (4) When the two-third re-

straints with lowest ICb are used, there is a small shift in the rmsd

distribution compared to when no distance restraints are used

(Figures 3H and 3A, T4-lysozyme; Figures 3P and 3I, aA-crystal-

lin). However, this shift is not nearly as drastic as the shift ob-

tained when the one-third most informative distant restraints

are used.

Using sCb to select restraints instead of ICb results in only

a slight reduction in model quality and slight variation in total

ICb of the selected restraints compared to that of the restraints

employed in the first experiment (Figures 3E–3H, T4-lysozyme;

Figures 3M–3P, aA-crystallin). This indicates maximal sequence

separation can be used to effectively define spin-label place-

Figure 2. Map of the EPR Restraints on the T4-Lysozyme Crystal Structure and on the aA-Crystallin Comparative Model

(A and E) Red dotted lines show dCb distances, which are restrained by respective dSL.

(B and F) Residues for which accessibilities eSL were measured are depicted as space-filling models.

(C and G) Diagram shows dSL (blue circle), the range of the derived distance restraints (blue), and the corresponding crystal/comparative model dCb (red bar).

(D and H) Diagram illustrating the correlation of eSL with eCb. The lines indicate the consensus model fit ± 3�sCb, where sCb was recalculated based on the con-

sensus fit to be 1.70. In (B), (F), (D), and (H), the residues are color coded with decreasing eSL from blue–cyan–yellow–orange–red; black indicates amino acids in

aA-crystallin that show reduced experimental accessibility due to intermolecular contacts with other aA-crystallin units in the oligomeric protein. (A)–(D) corre-

sponds to T4-lysozyme, and (E)–(H) corresponds to aA-crystallin.

Figure 3. Illustration of the Value of the Ex-

perimental Restraints in De Novo Protein

Folding for T4-Lysozyme and aA-Crystallin

(A)–(H) corresponds to T4-lysozyme, and (I)–(P)

corresponds to aA -crystallin. The backbone

rmsd distribution of 10,000 T4-lysozyme de novo

models created (A) without the use of EPR re-

straints, (B) with only the use of EPR distance re-

straints, (C) with only the use of EPR accessibility

restraints, (D) with the use of EPR distance and ac-

cessibility restraints. (E) The backbone rmsd distri-

bution of 10,000 T4-lysozyme de novo models

created with the use of 1/3 of the EPR distance re-

straints: top bar, those with the largest information

content; second bar, those between amino acids

furthest apart in sequence. The third and fourth

black and white bars denote the sum percent of in-

formation content of the restraints used for the top

and second bars, respectively. The width of the

blocks comprising the black and white bars de-

notes the information content of individual re-

straints. (F) Same as for (E) but using the distance

restraints with the lowest information content (top

bar) and nearest in sequence (second bar). (G)

Same as for (E) but using 2/3 of the total distance

restraints. (H) Same as for (F) but using 2/3 of the

total distance restraints. (I–P) Same as (A)–(H)

but for aA-crystallin.

ment and select for restraints with large

ICb. However, it should be noted that

some of the sites for spin labeling T4-ly-

sozyme were chosen with the crystal

structures at hand that might bias the re-

straint sets for increased information con-

tent. Furthermore, this experiment does

not test how spin labels should be distrib-

uted along the sequence. Additional ex-

periments indicate that, besides maxi-

mizing sCb, a uniform distribution of spin

labels over the sequence is optimal (data not shown).

Rosetta Folding of T4-Lysozyme and aA-Crystallin
No accessibility restraints were used in the large-scale folding

simulations, due to their minimal influence on structure determi-

nation. Of the 500,000 models built for T4-lysozyme, the lowest

rmsd obtained was 2.39 Å with a total of 117 models having an

rmsd value smaller than 3.5 Å. Of the 500,000 models built for

aA-crystallin, the lowest rmsd obtained was 3.36 Å with a total

of 46 models having an rmsd value smaller than 4.0 Å.

Filtering the 500,000 models of T4-lysozyme and aA-crystallin

reduces the number considered for high-resolution refinement

to a manageable number and enriches the high-resolution
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refinement pool for low rmsd models. Enrichment is measured as

the fraction of low rmsd models in the filtered ensemble divided

by the fraction of low rmsd models in the original ensemble. For

T4-lysozyme, requiring full agreement with all distance restraints

and an overall Rosetta score better than �35 points prunes

down the number of candidate structures to 10,906, keeping

27 models with rmsd values smaller than 3.5 Å. This enriches

low rmsd (%3.5 Å) models in the dataset by a factor of 27/

10,906 O 117/500,000 = 10.6.

For aA-crystallin, in order to keep approximately 10,000 struc-

tures for high-resolution refinement, models were required to

have an overall Rosetta score better than or equal to�75, b strand

pairing score better than�31, and total sum of all distance viola-

tions smaller than 3.0 Å. These criteria limit the number of struc-

tures to 9,796. Of the 9,796 models, 26 models have an rmsd of

less than 4.0 Å, which is an enrichment of low rmsd (%4.0 Å)

models of 26/9,796 O 46/500,000 = 28.8.

Structure Determination of T4-Lysozyme
and aA-Crystallin
After high-resolution refinement, models were filtered by agree-

ment with distance restraints. T4-lysozyme models were again

required to be in full agreement with all distance restraints. aA-

crystallin models were required to have sum total distance

restraint violations of less than 1 Å. The remaining models were

Figure 4. Correlation of De Novo Models’

Accuracy with the Energy of the De Novo

Models

(A and C) The nonloop rmsd versus Rosetta en-

ergy for T4-lysozyme and aA-crystallin models, re-

spectively.

(B and D) The percentage of incorrectly built side

chain conformations versus Rosetta energy for

T4-lysozyme and aA-crystallin models, respec-

tively. In all diagrams, the minimized crystal struc-

ture or comparative model is depicted as a circle;

the lowest energy model is shown as a square.

sorted by Rosetta full-atom energy, and

the lowest energy model for each protein

was compared to the crystal structure of

T4-lysozyme and the comparative model

of aA-crystallin. For rmsd analysis, loop

regions of the a-helical and b sandwich

domains were disregarded.

In addition to rmsd analysis, the agree-

ment of side chain conformations can be

captured by comparing the dihedral

angles c1.4. A specific set of such angles

c1.4 is called a ‘‘rotamer’’ (Dunbrack and

Karplus, 1993; Dunbrack, 2002). If all

angles c1.4 of an amino acid side chain

deviate less than 60�, the rotamer is the

same, and the conformation is closely re-

covered. The number reported for side

chain conformation comparison is the

percentage of nonagreeing rotamers (Fig-

ures 4B and 4D).

The Rosetta energy of T4-lysozyme de novo models decreases

as their rmsd and side chain rotamer disagreement to the native

structure diminish (Figures 4A and 4B). This allows the selection

of high-resolution models based on energy alone. The lowest

energy de novo model achieves an rmsd to the crystal structure

of 1.0 Å in the a-helical domain and 2.0 Å over all modeled resi-

dues (Figure 5A). Eighty percent of all rotamers are in agreement

with the crystal structure.

The Rosetta energy of aA-crystallin de novo models decreases

as their structure approaches that of the comparative model

(Figure 4C). However, side chain rotamer agreement does not

correlate with Rosetta energy (Figure 4D). The lowest energy

de novo model achieves an rmsd of 2.6 Å for the b sandwich

and 4.0 Å over the whole protein (Figure 5B). The rotamer agree-

ment in the b sandwich is 54.5%. Note that similar rmsds and

side chain agreements are also found between the comparative

model and two additional comparative models based on alterna-

tive templates (data not shown).

DISCUSSION

Structure Determination from Sparse EPR Restraints
The major conclusion of this paper is that structural restraints

obtained from EPR analysis of spin-labeled proteins can be

used in combination with de novo prediction methods to
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determine atomic-detail structures of proteins. Furthermore, the

structural interpretation of the EPR data for the purpose of

de novo modeling does not require a detailed understanding of

the position or conformation of the spin label relative to the back-

bone. A ‘‘motion-on-a-cone’’ model can provide inter-Cb dis-

tance restraints, and the spin-label accessibility can restrain the

number of close neighbors when building a structural model.

Only a few specific distance restraints are needed in order to

add substantial information and restrict the accessible fold space

significantly. Using all 25 distance restraints, 50% T4-lysozyme

models have an rmsd smaller than 8 Å compared to less than

5% in their absence. This means that less than one distance re-

straint per four amino acids was sufficient to focus the de novo

structure determination method on sampling the correct fold in

more than half of all runs of T4-lysozyme. Only 0.074 distance re-

straints per residue are needed in order to obtain an equivalent

rmsd distribution if the eight restraints between amino acids far-

thest apart in sequence are used. A significant increase in the

quality of models created with distance restraints was also noted

for aA-crystallin. By using the distance restraints between amino

acids farthest apart in sequence, only 0.136 distance restraints

per residue are needed in order to obtain an rmsd distribution

similar to that seen when using all restraints. The reduced fre-

quency at which the correct fold is obtained compared with T4-

lysozyme can be attributed to the more challenging folding path-

way for a b sandwich.

Relative Importance of Accessibility
and Spatial Restraints
Distance restraints—even with the comparably large uncer-

tainties resulting from EPR measurements—are more valuable

for de novo protein structure determination than solvent acces-

sibility data. Whereas distances reflect specific geometric rela-

tionships, the solvent accessibility reflects a convolution of local

interactions and rather unspecific interactions with the solvent.

The Rosetta energy function already contains knowledge-based

terms for these two types of interactions: the amino acid pair po-

tential and the environment potential. The pair potential de-

scribes the likelihood of two amino acid types to be spatially

close. The environment potential describes the likelihood of an

amino acid to be exposed to the solvent or buried in the core.

Thus, the EPR accessibility measurements, which reflect the ex-

pected buried/exposed distribution, add little information be-

yond the empirical potentials used in Rosetta.

It should be noted, however, that the importance of the spin la-

bel accessibility restraints may be understated by the use of wa-

ter-soluble proteins as a test case. In general, de novo prediction

methods for secondary structure and for sequence-specific res-

idue environment are quite accurate for water-soluble proteins

(Rost and Sander, 1993; Jones, 1999; Rost, 2001; Meiler,

2003). In contrast, the apolar character of the membrane core

makes a computational distinction between membrane and pro-

tein core more difficult. Thus, experimental accessibilities are ex-

pected to be critical in defining the secondary structure and

topology of initial models for membrane proteins.

Structural Interpretation of EPR Parameters
The fundamental assumption in the ‘‘motion-on-a-cone’’ model

is that the spin label cannot point toward the interior of the pro-

tein. Thus, possible specific interactions of spin label and protein

are disregarded. This is manifest as a bias toward over predicting

the frequency with which large (>4Å) dSL–dCb values occur.

Additionally, the model underestimates the frequency with which

low (<4Å) dSL–dCb values occur. This is because the spin labels

cannot adopt conformations that closely mimic nonspherical

arrangements on the surface of proteins such as b strands and

a helices. A more precise estimation of the distribution of dSL–

dCb values might be possible as a comprehensive understanding

of spin label rotamers emerges (Langen et al., 2000).

While there is a robust linear relation between the experimental

spin-label accessibility, eSL, and the predicted accessibility, eCb,

the applied consensus fit procedure used to obtain the relation

has two disadvantages. First, because a comparative model

was used in the development of the consensus linear regression

Figure 5. Overlay of Lowest Energy De Novo Models on Crystal

Structure or Comparative Model

(A and B) For T4-lysozyme and aA-crystallin, respectively, superimposition of

the lowest energy model (rainbow colored) with the crystal structure or com-

parative model (gray). The backbone is given as a ribbon diagram. Side chains

of T4-lysozyme and of the b sandwich of aA-crystallin are shown as stick

models without hydrogen atoms.
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model, using it for de novo folding simulations is somewhat

circular. Second, part of the accessibility data for aA-crystallin

are influenced by oligomerization and had to be excluded be-

cause only a model of the monomeric state of aA-crystallin is

computationally feasible. Nevertheless, using this relation in sim-

ulations is arguably an acceptable test of the usefulness of such

data for de novo protein folding.

Conclusion
De novo protein structure prediction samples as much of the

conformational space as possible in order to find the native

structure; the number of models reflects the extent of sampling.

The increase in the number of high-quality models indicates that

the conformational search space has been reduced by the re-

straints, which allows the remaining space to be sampled more

densely. It is remarkable that sparse distance restraints with as

large an uncertainty as those obtained from the ‘‘motion-on-a-

cone’’ model provide such a drastic improvement in the rmsd

distribution of models. The most efficient reduction in conforma-

tional search space results from restraints between residues far

apart in the primary sequence but close in Euclidean space. A

uniform distribution of restraints throughout the protein se-

quence should be taken into consideration in order to maximize

efficiency. Experimental accessibility data add little for structure

elucidation of soluble proteins. Less than 0.25 restraints per

amino acid are sufficient for protein structure elucidation at

atomic detail.

The tendency for side chains to achieve their native rotamer as

the protein model backbone approaches its native conformation

has been termed ‘‘backbone memory’’ in protein design (Kuhl-

man and Baker, 2000) and was also observed in very accurate

high-resolution de novo protein structure prediction (Bradley

et al., 2005b). As a protein model backbone approaches its

native conformation, backbone memory allows Rosetta to accu-

rately place side chains into their native rotamer (Kuhlman and

Baker, 2000). This is demonstrated with T4-lysozyme; 80% of

all rotomers are correct in the lowest energy de novo model,

although no side chain conformational restraints are used. For

aA-crystallin, definite placement of side chain atoms cannot be

conclusively analyzed, since no high-resolution crystal structure

is available. The energies between comparative and de novo

models are similar; however, no convergence in side chain

Table 1. T4-Lysozyme EPR Distance Restraints in Comparison with Crystal Structure Distances

AA1–AA2a dCb (Å)b dSL (Å)c sSL (Å)d dSL + sSL+ 2.5 (Å)e dSL � sSL � 12.5 (Å)f Reference

061–135 37.7 47.2 2.2 51.9 32.5 (Borbat et al., 2002)

065–135 34.3 46.3 2.2 51.0 31.6 (Borbat et al., 2002)

061–086 34.5 37.5 2.0 42.0 23.0 (Borbat et al., 2002)

065–086 28.9 37.4 2.7 42.6 22.2 (Borbat et al., 2002)

080–135 26.7 36.8 1.0 40.3 23.3 (Borbat et al., 2002)

061–080 28.7 34.0 2.2 38.7 19.3 (Borbat et al., 2002)

065–080 22.6 26.5 3.8 32.8 10.2 (Borbat et al., 2002)

119–131 13.2 25.0 5.0 32.5 7.5 new data

123–131 14.6 23.0 5.0 30.5 5.5 new data

065–076 16.8 21.4 2.8 26.7 6.1 (Borbat et al., 2002)

116–131 11.1 19.0 10.0 31.5 0.0 new data

119–128 10.4 19.0 4.0 25.5 2.5 new data

140–151 15.5 18.0 9.0 29.5 0.0 new data

089–093 9.8 16.0 3.0 21.5 0.5 new data

086–119 10.0 15.0 3.0 20.5 0.0 new data

120–131 10.5 14.0 3.0 19.5 0.0 new data

127–151 9.6 14.0 2.4 18.9 0.0 new data

140–147 10.1 13.0 7.0 22.5 0.0 new data

131–150 8.7 5.7 0.4 8.6 0.0 new data

127–154 5.9 7.0 3.0 12.5 0.0 new data

131–154 9.5 6.5 4.0 13.0 0.0 new data

134–151 10.7 7.0 0.8 10.3 0.0 new data

131–151 10.4 9.0 8.0 19.5 0.0 new data

088–100 8.9 <6.0 3.0 11.5 0.0 new data

089–096 8.4 <6.0 3.0 11.5 0.0 new data
a Indices of spin-labeled amino acids with respect to the crystal structure.
b Cb distance as reported in the crystal structure.
c Spin label distance as observed by EPR.
d Standard deviation as observed by EPR.
e Maximum Cb atom distance predicted by cone model.
f Minimum Cb atom distance predicted by cone model.
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conformation was achieved. Therefore, it remains unclear

whether the rotamers predicted by the comparative or the de

novo model are more accurate.

Overall, this benchmark study sets the stage for application of

EPR restraints to protein targets where no structural model is yet

available. Advancements in protein-folding algorithms and incor-

poration of other experimental techniques will further improve

the efficiency and accuracy of de novo protein structure determi-

nation from sparse experimental data.

EXPERIMENTAL PROCEDURES

Introduction of Site-Directed Spin Labels and EPR Conditions

For the introduction of spin labels, cysteine residues were systematically intro-

duced into the (cysteine-free) T4-lysozyme and aA-crystallin amino acid se-

quences through single or double point mutations (Koteiche et al., 1998; Bor-

bat et al., 2002; Altenbach et al., 2005). After recombinant protein expression

and purification, the mutant was reacted with methanethiosulfonate nitroxide

reagent. A total of 25 double mutants and 57 single mutants of T4-lysozyme

(Tables 1 and 2) and 36 double mutants and 87 single mutants of aA-crystallin

(Tables 3 and 4) resulted in the restraints used for the current analysis. Sample

preparation and EPR measurement have been described elsewhere

(Mchaourab et al., 1996; Koteiche and Mchaourab, 1999).

EPR Distance Measurements

For T4-lysozyme, 25 distances were measured (Figure 2A and Table 1).

Distances derived from double electron-electron resonance (DEER) or DQC

experiments (Borbat et al., 2002; Jeschke, 2002; Borbat and Freed, 2007)

were distributed in different areas of the molecule with predicted distances

larger than 25 Å. They provide geometric restraints on the global fold. CW-

EPR was used to measure distances between neighboring helices. For each

pair of interacting helices, doubly labeled mutant sets were created by desig-

nating a reference spin label in one helix and moving another spin label along

the exposed surface of the second helix.

The aA-crystallin EPR data (CW-EPR) (Table 3) consists of 36 distances, in-

cluding b strand to b strand and b strand to loop distances covering most of the

overall topology of the molecule (Koteiche et al., 1998; Koteiche and

Mchaourab, 1999) (Figure 2E). For both T4-lysozyme and aA-crystallin,

when measurements provided multiple distances, the most contributing dis-

tance was used.

For the CW-EPR experiments, dipolar coupling between spin labels was

analyzed both in the liquid state and in frozen solutions by using a modification

of the deconvolution method (Rabenstein and Shin, 1995). This approach re-

quires two EPR spectra of the double mutant: one in the absence and one in

Table 2. T4-Lysozyme EPR Solvent Accessibility in Comparison

with Crystal Structure

AAa eCb
b eSL

c eCb
d

086 9 0.36 7.7

093 6 0.41 5.8

094 10 0.28 10.8

096 10 0.23 12.7

097 12 0.17 15.0

100 13 0.15 15.8

101 14 0.13 16.5

102 13 0.14 16.2

103 14 0.16 15.4

104 10 0.28 10.8

105 10 0.33 8.9

106 7 0.31 9.7

108 10 0.32 9.3

109 6 0.45 4.3

111 12 0.23 12.7

113 8 0.40 6.2

114 11 0.30 10.0

115 6 0.36 7.7

116 7 0.52 1.6

117 10 0.29 10.4

118 13 0.21 13.5

119 8 0.35 8.3

120 11 0.23 12.7

121 16 0.10 17.7

122 9 0.36 7.7

123 6 0.39 6.6

124 6 0.42 5.4

125 8 0.40 6.2

126 11 0.32 9.3

127 7 0.44 4.7

128 8 0.42 5.4

129 13 0.14 16.2

130 12 0.30 10.0

131 8 0.37 7.4

132 10 0.35 8.1

133 15 0.23 12.7

134 10 0.30 10.0

135 6 0.38 7.0

136 9 0.31 9.7

137 5 0.41 5.8

138 11 0.29 10.4

139 13 0.33 8.9

140 6 0.37 7.4

141 8 0.25 11.9

142 9 0.27 11.2

143 8 0.39 6.6

144 6 0.36 7.7

145 9 0.24 12.3

146 13 0.27 11.2

Table 2. Continued

AAa eCb
b eSL

c eCb
d

147 11 0.31 9.7

148 12 0.28 10.8

149 14 0.21 13.5

150 12 0.29 10.4

151 11 0.37 7.4

153 14 0.24 12.3

154 10 0.34 8.5

155 8 0.25 11.9
a Indices of spin-labeled amino acids with respect to the crystal structure.
b Number of Cb atom neighbors in the crystal structure.
c Spin label accessibility as observed by EPR (Sompornpisut et al., 2002).
d Number of Cb atom neighbors predicted by the consensus linear re-

gression relation.
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Table 3. aA-Crystallin EPR Distance Restraints in Comparison with Comparative Model

AA1–AA2a dCb (Å)b dSL (Å)c sSL (Å)d dSL + 2.5 + sSL (Å)e dSL � sSL � 12.5 (Å)f Reference

065–072 4.5 6.0 3.0 11.5 0.0 (Koteiche and Mchaourab, 1999)

068–122 13.0 19.5 5.0 27.0 2.0 new data

070–072 6.3 6.6 1.5 10.6 0.0 (Koteiche and Mchaourab, 1999)

070–074 12.8 12.0 4.0 18.5 0.0 (Koteiche and Mchaourab, 1999)

070–142 5.2 6.0 2.0 10.5 0.0 (Koteiche and Mchaourab, 1999)

072–142 5.7 5.5 2.0 10.0 0.0 (Koteiche and Mchaourab, 1999)

073–118 5.6 6.0 3.0 11.5 0.0 new data

074–140 6.0 6.0 2.0 10.5 0.0 (Koteiche and Mchaourab, 1999)

084–099 4.5 7.6 0.6 10.7 0.0 (Koteiche et al., 1998)

084–101 8.6 7.5 8.0 18.0 0.0 (Koteiche et al., 1998)

088–095 4.6 6.0 0.7 9.2 0.0 (Koteiche et al., 1998)

088–097 7.7 7.0 0.8 10.3 0.0 (Koteiche et al., 1998)

090–093 6.8 6.9 1.1 10.5 0.0 (Koteiche et al., 1998)

090–099 18.7 18.5 4.0 25.0 2.0 (Koteiche et al., 1998)

090–126 11.1 12.0 4.0 18.5 0.0 (Koteiche and Mchaourab, 1999)

092–123 10.4 12.0 6.0 20.5 0.0 (Koteiche and Mchaourab, 1999)

095–117 5.0 7.6 1.0 11.1 0.0 (Koteiche et al., 1998)

101–103 5.4 6.3 0.8 9.6 0.0 (Koteiche and Mchaourab, 1999)

101–111 11.9 7.6 1.0 11.1 0.0 (Koteiche et al., 1998)

103–105 7.5 9.5 8.0 20.0 0.0 (Koteiche and Mchaourab, 1999)

105–111 11.6 18.0 9.0 29.5 0.0 (Koteiche and Mchaourab, 1999)

119–123 10.5 13.0 6.0 21.5 0.0 (Koteiche and Mchaourab, 1999)

119–125 17.1 23.0 3.0 28.5 7.5 (Koteiche and Mchaourab, 1999)

119–127 21.2 24.0 6.0 32.5 5.5 (Koteiche and Mchaourab, 1999)

119–130 19.3 23.0 5.0 30.5 5.5 (Koteiche and Mchaourab, 1999)

119–132 21.9 23.0 4.0 29.5 6.5 (Koteiche and Mchaourab, 1999)

125–144 4.0 7.0 4.0 13.5 0.0 (Koteiche and Mchaourab, 1999)

127–142 13.1 20.0 4.0 26.5 3.5 new data

128–144 5.0 4.0 4.0 10.5 0.0 (Koteiche and Mchaourab, 1999)

128–146 10.4 13.0 4.0 19.5 0.0 (Koteiche and Mchaourab, 1999)

130–144 9.7 6.0 1.0 9.5 0.0 (Koteiche and Mchaourab, 1999)

131–133 8.0 7.0 1.0 10.5 0.0 (Koteiche and Mchaourab, 1999)

131–134 12.3 17.0 4.0 23.5 0.5 (Koteiche and Mchaourab, 1999)

132–135 11.5 16.0 5.0 23.5 0.0 (Koteiche and Mchaourab, 1999)

132–142 8.8 6.0 1.0 9.5 0.0 (Koteiche and Mchaourab, 1999)

132–144 16.1 9.0 5.0 16.5 0.0 (Koteiche and Mchaourab, 1999)
a Indices of spin-labeled amino acids with respect to the protein sequence.
b Cb atom distance in comparative model.
c Spin-label distance as observed by EPR.
d Standard deviation as observed by EPR.
e Maximum Cb atom distance predicted by cone model.
f Minimum Cb atom distance predicted by cone model.
the presence of the dipolar interaction (Figures 6A and 6B, respectively). The

former is obtained from the digital sum of the spectra of each single mutant.

A Levenberg-Marquardt algorithm was used to minimize the difference be-

tween the experimental EPR spectrum of the double mutant and the spectrum

obtained from the convolution of a broadening function with the EPR spectrum

of the corresponding sum of single mutants. The broadening function con-

sisted of either one or two Gaussian distributions for the distance between

spin labels (Figure 6C). The relatively wide distance distributions obtained

is consistent with a highly dynamic motional state of the spin label obtained
190 Structure 16, 181–195, February 2008 ª2008 Elsevier Ltd All rig
at the predominantly exposed sites. The results obtained in the solid and liquid

states are in agreement both in terms of the average distance and the overall

distribution as previously reported (Altenbach et al., 2001).

DEER measurements were performed on a Bruker 580 pulsed EPR spec-

trometer, by using a standard four-pulse protocol (Jeschke, 2002). Experi-

ments were performed at 80 K by using Ficoll as cryoprotectant. Sample con-

centration was 200 mM and sample volume 20 ml. DEER signals were analyzed

by the Tikhonov regularization (Chiang et al., 2005) to determine average dis-

tances and distributions in distance, P(r), as illustrated in Figures 6D–6F.
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Table 4. aA-Crystallin EPR Solvent Accessibility in Comparison Comparative Model

AAa eCb
b eSL

c eCb
d AAa eCb

b eSL
c eCb

d AAa eCb
b eSL

c eCb
d

060 5 0.01 10.9 089 11 0.18 9.0 118 12 0.01 10.9

061 5 0.04 10.5 090 9 0.26 8.2 119 7 0.26 8.1

062 11 0.00 11.0 091 4 0.41 6.5 120 11 0.01 10.9

063 6 0.02 10.8 092 7 0.35 7.1 121 5 0.19 8.9

064 10 0.05 10.5 093 12 0.27 8.1 122 8 0.43 6.2

065 9 0.07 10.2 094 17 0.06 10.4 123 7 0.30 7.7

066 10 0.05 10.4 095 13 0.23 8.4 124 16 0.08 10.1

067 9 0.04 10.6 096 15 0.14 9.5 125 9 0.34 7.3

068 5 0.19 8.9 097 12 0.21 8.6 126 7 0.20 8.8

069 6 0.21 8.7 098 12 0.01 10.9 127 5 0.38 6.8

070 10 0.16 9.3 099 9 0.13 9.6 128 9 0.32 7.5

071 16 0.05 10.5 100 16 0.01 10.9 129 14 0.21 8.7

072 12 0.06 10.3 101 9 0.19 9.0 130 9 0.18 9.0

073 15 0.07 10.2 102 10 0.14 9.5 131 9 0.16 9.3

074 13 0.05 10.5 103 6 0.17 9.2 132 8 0.22 8.6

075 12 0.02 10.8 104 6 0.15 9.3 133 11 0.12 9.7

076 11 0.02 10.8 105 12 0.19 8.9 134 7 0.07 10.3

077 12 0.01 10.9 106 5 0.10 9.9 135 4 0.19 8.9

078 9 0.02 10.8 107 7 0.08 10.1 136 5 0.08 10.1

079 11 0.03 10.6 108 4 0.07 10.2 137 12 0.08 10.1

080 14 0.01 10.9 109 10 0.17 9.1 138 10 0.02 10.8

081 10 0.09 10.0 110 3 0.04 10.6 140 13 0.05 10.5

082 8 0.27 8.0 111 7 0.15 9.3 141 15 0.01 10.8

083 5 0.29 7.8 112 9 0.00 11.0 142 11 0.11 9.7

084 10 0.25 8.2 113 9 0.08 10.1 143 14 0.03 10.7

085 16 0.05 10.4 114 11 0.01 10.9 144 11 0.20 8.8

086 7 0.22 8.5 115 9 0.15 9.4 145 12 0.10 9.8

087 12 0.14 9.5 116 11 0.00 11.0 146 7 0.41 6.5

088 8 0.35 7.2 117 10 0.16 9.3 147 2 0.39 6.7
a Indices of spin-labeled amino acids with respect to the protein sequence.
b Number of Cb atom neighbors in the crystal structure.
c Spin-label accessibility as observed by EPR (Koteiche et al., 1998; Koteiche and Mchaourab, 1999).
d Number of Cb atom neighbors predicted from the consensus linear regression relation.
EPR Accessibility Measurements

For T4-lysozyme, eSL of 57 spin labels was measured (Sompornpisut et al.,

2002) (Table 2). For aA-crystallin, eSL of 87 spin labels was measured (Table

4). Accessibility is assessed by measuring the Heisenberg exchange rate

between the nitroxide spin label and either molecular oxygen, in the case of

T4-lysozyme, or NiEDDA, in the case of aA-crystallin. For the latter, power

saturation measurements were carried out under nitrogen and in the presence

of 3 mM NiEDDA (Farahbakhsh et al., 1992). eSL was calculated as previously

described (Farahbakhsh et al., 1992; Altenbach et al., 2005).

aA-Crystallin Comparative Model Preparation

The 88 amino acid C-terminal domain of aA-crystallin was submitted to the

BioInfo metaserver (Fischer, 2000; Kelley et al., 2000; Shi et al., 2001; Ginalski

et al., 2003, 2004; Karplus et al., 2003; McGuffin and Jones, 2003; Rost et al.,

2004; Bryson et al., 2005; Soding et al., 2005; Finn et al., 2006). The server

identified three heat-shock proteins (PDB codes: 1gmeA [van Montfort et al.,

2001], 1shsA [Kim et al., 1998], and 2bolA [Stamler et al., 2005]) as possible

templates with a 3D-Jury score of over 60, where a score over 40 indicates

a �90% chance that the identified proteins have the same fold as the submit-

ted amino acid sequence (Ginalski et al., 2003). Obtaining the correct fold is the

most important and difficult aspect of de novo protein folding, so having such
Structure 16
a large likelihood that the identified proteins have the same fold as aA-crystallin

is essential to ensuring the comparative model provides an adequate bench-

mark with which the fold of de novo models can be compared. There was

approximately 20% sequence homology between the aA-crystallin amino

acid sequence and the three template sequences.

A multiple sequence alignment was performed for the aA-crystallin amino

acids with the template proteins. The aligned aA-crystallin amino acids were

then mapped onto the template proteins’ atomic coordinates, and Rosetta

was used to reconstruct the loop regions of aA-crystallin while holding the

b sandwich region fixed. Afterwards, Rosetta was used to perform a high-res-

olution refinement of the aA-crystallin comparative models.

The lowest energy comparative model was used to compare against the de

novo Rosetta models. This model was based on the PDB structure 1gmeA (van

Montfort et al., 2001). The model is 2.3 Å rmsd to a previously published (Ko-

teiche and Mchaourab, 1999) comparative model based on a different tem-

plate protein (Hsp16.5) but achieves a lower Rosetta energy after both models

are refined at high resolution.

The Spin Label ‘‘Motion-on-a-Cone’’ Model

A simple cone model for the relative position of the spin label with respect to

the Cb of an amino acid was developed by using three assumptions. First,
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the spin label’s motion follows the perimeter of the base of a right circular cone

with an opening angle of 90� whose vertex is the Cb. The average position of

this motion is
ffiffiffi

2
p

=2 of length of the extended chain (8.5 Å) (Borbat et al., 2002),

which gives a maximal effective distance between spin label and Cb of 6Å (Fig-

ures 1A and 1B). Second, the protein is globular. Third, the angle defined by the

center of the protein, the Cb, and the spin label is between 120� and 180�, and,

therefore, spin labels point away from the interior of the protein (Figures 1B and

1C). The ‘‘motion-on-a-cone’’ model can also be adapted for spin labels of dif-

ferent linking arms or ring substituents that restrict the amplitude of its motion.

Using the ‘‘Motion-on-a-Cone’’ Model to Translate

EPR Spin-Label Distances into Structural Restraints

The difference between dSL and dCb given by the model described above was

analyzed with the software package Mathematica (Wolfram Research, Inc.,

2005): (1) an ellipsoid with the main radii 10 Å % rx % ry % rz % 20 Å was cre-

ated with otherwise randomly chosen rx, ry, and rz. Its center is C. (2) Two

points, Cbi and Cbj, on the surface of this ellipsoid were selected by randomly

choosing the polar coordinates 4i,j and ji,j. From these points, dCb is computed

as the Euclidean distance. (3) Two numbers between 120� and 180� for the an-

gle C–Cbi–SLi and C–Cbj–SLj are chosen randomly, and the position of the spin

labels, SLi and SLj, is computed. From these points, dSL is computed as the

Euclidean distance. (4) The difference dSL–dCb is computed. (5) Steps 1–4

are repeated 10,000 times, and the values dSL–dCb are plotted as a histogram

(Figure 1D).

This analysis of the difference between dSL and dCb showed that (dSL + 2.5 Å)

R dCb R (dSL� 12.5 Å) (Figure 1D). sSL, which is the experimentally determined

standard deviation in dSL, is a measure of the magnitude of the spin label’s

motion or its static distribution relative to the Cb. Since an increased magnitude

of motion increases the ambiguity of the derived dCb, sSL is added as an addi-

tional allowance to the restraint, which gives (dSL + sSL + 2.5 Å) R dCb R (dSL�
sSL � 12.5 Å).

Development of a Model to Translate EPR Spin-Label Solvent

Accessibility into Structural Restraints

Obtaining a structural restraint from EPR spin-label solvent accessibility is ac-

complished by building a consensus linear regression relation of eSL to eCb in

a three-step procedure: (1) using the crystal structure of T4-lysozyme, eCb was

computed for all residues with known eSL (Table 2). A linear regression was fit

to a plot of eCb of a residue versus the corresponding eSL, yielding the relation

eCb = (0.71 � eSL) � 24.23 with a correlation coefficient of �0.80. Using this

relation to calculate the number of neighbors for a residue gives eCb
fit for

that residue. The standard deviation (sCb) of eCb from eCb
fit was calculated to

be 1.65. (2) For those residues in aA-crystallin that have an experimentally de-

termined accessibility (Table 4), eCb was determined by using the comparative

model of aA-crystallin. In addition, the equation from (1) above was used to cal-

culate the number of neighbors, eCb
fit, for each residue. Amino acids were ex-

cluded from a linear fitting of eCb versus eSL when jeCb � eCb
fitj > 2 � sCb. This

procedure was necessary in order to exclude amino acids in aA-crystallin that

show reduced experimental accessibility due to intermolecular contacts with

other aA-crystallin units in the oligomeric protein (Figures 2F and 2H). Fitting

a linear regression to the remaining data gives a relation similar to that seen

for T4-lysozyme: eCb = (0.72 � eSL) � 21.63 with a correlation coefficient of

�0.87. (3) Combining the data for both proteins in a single consensus linear

regression model yields eCb = (0.76� eSL) � 20.87 with a correlation coefficient

of �0.83 (Figures 2D and 2H).

Implementation of Structural Restraints

for De Novo Structure Determination

The distance restraints are used as an additional penalty in the energy function

of Rosetta. This penalty is zero if dCb lay within the range predicted from dSL. As
dCb ventures outside this range, a quadratic penalty function is applied. The

detailed implementation of this penalty function and its use to guide the folding

simulation is described in detail in the respective RosettaNMR publications

(Bowers et al., 2000; Rohl and Baker, 2002).

Similarly, ðeCb � econsensus model
Cb Þ2 is used as a quadratic penalty function for the

accessibilitydata.Therelativeweightof thispenalty functionwasoptimizedbyase-

ries of experiments varying its weight in a wide range of two orders of magnitude.

Rosetta Folding Simulations

De novo model generation using Rosetta was performed in four steps: step 1,

the protein is folded by using RosettaNMR with EPR distance restraints to

guide the simulation (Bowers et al., 2000; Rohl and Baker, 2002). In this

step, amino acid side chains are embraced in a single superatom—a ‘‘centroid’’

(Simons et al., 1997). Step 2, choosing the models with lowest energy and best

agreement with experimental restraints prunes the large number of �500,000

models from step 1 to �10,000. Step 3, models obtained from step 2 are

refined to high resolution. After replacing side chain centroids with full-atom

side chain representations from a backbone-dependent rotamer library (Dun-

brack and Karplus, 1993), an iterative protocol of all-atom gradient minimiza-

tion and side chain repacking is repeated eight times. The details of the proto-

col are published elsewhere (Bradley et al., 2005b; Misura and Baker, 2005).

No restraints were used during these refinement simulations in order to fully le-

verage the discriminative power of the Rosetta energy function (Kuhlman and

Baker, 2000; Bradley et al., 2005a, 2005b; Misura and Baker, 2005; Misura

et al., 2006). Step 4, models from step 3 are again filtered for good agreement

with the experimental restraints.

Specific standard Rosetta procedures were used that are described in detail

elsewhere (Simons et al., 1997, 1999; Bowers et al., 2000; Bonneau et al.,

2001a; Rohl and Baker, 2002; Meiler et al., 2003; Rohl et al., 2004; Bradley

et al., 2005a). Secondary structure predictions were obtained from the primary

sequence of the C-terminal 107 amino acids of T4-lysozyme and the C-termi-

nal 88 amino acid primary sequence of aA-crystallin by using Jufo (Meiler et al.,

2001; Meiler and Baker, 2003), PsiPred (Jones, 1999), and Sam (Karplus et al.,

1997). All T4-lysozyme and aA-crystallin homologs were excluded from the

protein database prior to modeling in order to simulate structure elucidation

of an unknown protein fold as closely as possible.

Models were obtained in 500,000 independent simulations on a cluster in

Vanderbilt University’s Advanced Computing Center for Research & Education

(ACCRE) by using up to 300 parallel 2.2 GHz JS20 IBM PowerPC processors.

The average time to complete a model was approximately 100 s for T4-lyso-

zyme and 180 s for aA-crystallin. The high-resolution refinement protocol

requires about 500 s of computation time per model.
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Figure 6. Distance Measurements at Room Temperature and in the Solid State between Spin Labels Using EPR

(A) Representative reference EPR in the absence of dipolar coupling obtained from the digital sum of the corresponding single mutant spectra.

(B) Spectra of double mutants along with the nonlinear least-squares fit obtained by the convolution method as described in the Experimental Procedures section.

(C) Distance distributions obtained from CW-EPR spectra.

(D) Distance measurements by DEER for representative double mutants.

(E and F) Raw DEER signals were background corrected and then fit by using Tikhonov regularization to obtain (F) average distances and distance distributions.
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