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INTRODUCTION

As members of the sodium and chloride-dependent

neurotransmitter transporter gene family, serotonin (5-

HT) transporters (SERTs) carry out the uptake of 5-HT

across plasma membranes in the central nervous system,

peripheral nervous system, placenta, platelets, and pul-

monary system.1,2 SERTs are targets of antidepressants

and substances of abuse like cocaine and 3,4-methyl-

dioxy-methamphetamine, commonly known as ‘‘Ecstasy.’’3

Hydropathy analyses initially suggested that SERTs are

integral membrane proteins with 12 a-helices.2,4,5 Site-

directed mutagenesis and substituted cysteine accessibility

method (SCAM) experiments on putative transmembrane

TMs and loops have supported this proposal.6–10

Mutagenesis of key residues has provided insight into

the structure and function of SERT. Shortening the ethyl-

amine tail of tryptamine by one methylene group (di-
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ABSTRACT

To identify potential determinants of substrate selectivity in
serotonin (5-HT) transporters (SERT), models of human and
Drosophila serotonin transporters (hSERT, dSERT) were built
based on the leucine transporter (LeuTAa) structure reported
by Yamashita et al. (Nature 2005;437:215–223), PBDID 2A65.
Although the overall amino acid identity between SERTs and
the LeuTAa is only 17%, it increases to above 50% in the first
shell of the putative 5-HT binding site, allowing de novo com-
putational docking of tryptamine derivatives in atomic detail.
Comparison of hSERT and dSERT complexed with substrates
pinpoints likely structural determinants for substrate binding.
Forgoing the use of experimental transport and binding data
of tryptamine derivatives for construction of these models ena-
bles us to critically assess and validate their predictive power:
A single 5-HT binding mode was identified that retains the
amine placement observed in the LeuTAa structure, matches
site-directed mutagenesis and substituted cysteine accessibility
method (SCAM) data, complies with support vector machine
derived relations activity relations, and predicts computational
binding energies for 5-HT analogs with a significant correla-
tion coefficient (R 5 0.72). This binding mode places 5-HT
deep in the binding pocket of the SERT with the 5-position
near residue hSERT A169/dSERT D164 in transmembrane he-
lix 3, the indole nitrogen next to residue Y176/Y171, and the
ethylamine tail under residues F335/F327 and S336/S328
within 4 Å of residue D98. Our studies identify a number of
potential contacts whose contribution to substrate binding
and transport was previously unsuspected.
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methyl-tryptamine to gramine) causes a decrease in sub-

strate uptake in rat SERT (rSERT). The addition of a

methylene group, via a D98E mutation, restores uptake

of gramine to levels expected for dimethyl-tryptamine,

suggesting that residue D98 forms a direct (ion pair)

interaction with the substrate.11 Chen et al.8 implicated

I172 and I176 in substrate and inhibitor binding through

protection of transporter function from inactivation by

methanethiosulfonate reagents (MTS) in cysteine mutants

of these residues. Several studies have identified amino

acid sequence differences among SERT species that confer

alternate specificities for substrates and inhibitors.3,12–14

Barker et al.15 used human SERT (hSERT) and Drosoph-

ila SERT (dSERT) chimeras to implicate Y95 in forming

part of the recognition site for citalopram and mazindol,

two biogenic amine reuptake inhibitors. Adkins et al.14

used the same approach to show the Y95F hSERT mutant

exhibits dSERT-like recognition of N-isopropyl trypt-

amine. Henry et al.12 found that the I172 residue in

hSERT displays a marked functional divergence with

respect to inhibitor but not substrate potencies when the

residue is mutated to its dSERT identity (I172M).

Although these advances have identified residues involved

in 5-HT and antagonist recognition, interpretation of these

data would benefit from a three-dimensional (3D) context

provided by high-resolution transporter structures.

Comparative models of SERT have been reported that

interpret the structure function implications of site-

directed mutagenesis data and substituted cysteine acces-

sibility data using Na1/H1 antiporter cyro-EM densities

and crystal structure as well as the Lac permease crystal

structure.16–18 However, the low-sequence homology

and low-functional correlation of these templates to

SERTs limits the predictive power of these models. The

recently reported crystal structure for a bacterial Na1-de-

pendent leucine transporter (LeuTAa), a bona fide mem-

ber of the neurotransmitter sodium symporter (NSS)

protein family, represents a critical break-through for the

field.19,20 The LeuTAa structure confirms a predicted to-

pology for NSS members consisting of 12 TM spanning

a-helices. Unexpectedly, it features two five-helix bundles

arranged in an inverted mirror symmetry. The final two

helices, TMs 11 and 12, reside peripheral to the core

transporter and may participate in homo-oligomeriza-

tion.21 In the crystal structure of LeuTAa, the substrate

leucine is located in a pocket formed by TMs 1, 3, 6, and

8. Notably, unwound regions in the centers of TMs 1 and

6 serve as contact points for the carboxyl and amine

groups of leucine. Beuming et al.22 refined the primary

sequence alignment of LeuTAa with a large multisequence

alignment of eukaryotic and prokaryotic NSS family

members’ sequences, resulting in an alignment featuring

an improved agreement with available biochemical data

that underscores the utility of the LeuTAa structure.

In this manuscript, ROSETTA comparative model-

ing23,24 and docking25 approaches are invoked for their

power in building accurate models of membrane proteins

from distant sequence homologs as recently demon-

strated with voltage-gated K1 channels.26 Our approach

involves comprehensive high-resolution docking of 5-HT

into SERT comparative models based on the LeuTAa

structure. We refrain from using experimental data dur-

ing model construction to permit rigorous testing of the

predictive power of our models using data derived from

site-directed mutagenesis, SCAM, and binding affinity

experiments.

METHODS

SERT sequence alignment

The alignment used in the comparative models of

dSERT and hSERT on LeuTAa was synthesized from the

alignments of Beuming et al.22 The adjusted alignment

published between LeuTAa and rSERT was combined with

the alignment of the eukaryotic NSS family.

The SERT sequences were divided into TM and bind-

ing site regions based on the LeuTAa crystal structure.

TMs 1, 3, 6, and 8 form the core TMs that surround the

leucine binding site. First-shell residues are defined as

any residues with a Ca atom within 7 Å of the leucine

ligand in the LeuTAa structure. We define the second-

shell binding site residues to be all residues with a Ca

atom within 12 Å of the leucine ligand in the LeuTAa.

SERT comparative model construction

The backbone coordinates of the TM helices from the

LeuTAa crystal structure (PDBID 2A65) were retained in

the comparative models of dSERT and hSERT. The loop

regions were built in ROSETTA using Metropolis Monte

Carlo fragment replacement24 combined with Dunbrack

cyclic coordinate descent loop closure.27 In short, /-w
angles of backbone segments of homologous sequence

amino acid fragments from the PDB are introduced for

the residues in the loops. After the fragment substitution,

slight changes in the /-w angles are made to close breaks

in the protein chain. Side chains for all residues in the pro-

tein were built using ROSETTA’s Metropolis Monte Carlo

rotamer search algorithm.28 Subsequently, the 10 models

generated for both dSERT and hSERT were subjected to

eight iterative cycles of side-chain repacking and gradient

minimization of /, w, and v angles in ROSETTA.

SERT serotonin docking

A conformational ensemble containing 100 conforma-

tions of 5-HT was generated using the mmff94 small

molecule force field in Molecular Operating Environ-

ment, Chemical Computing Group, Montreal, Quebec,

Canada. The ensemble contained representatives from the

(�) gauche and the anti conformations of the ethylamine

tail. Each conformation from the ensemble was placed
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into both hSERT and dSERT models for docking calcula-

tions using ROSETTALIGAND.25 ROSETTALIGAND

placed 5-HT in a random orientation inside a 10 Å cube

centered at the same depth as leucine in the LeuTAa struc-

ture. ROSETTALIGAND then simultaneously placed side-

chain rotamers around the ligand and optimized the

ligand pose in a Metropolis Monte Carlo simulated

annealing algorithm. The energy function used during the

search contains terms for van der Waals attractive and re-

pulsive forces, statistical energy derived from the probabil-

ity of observing a side-chain conformation in the PDB,

hydrogen bonding, electrostatic interactions between pairs

of aminoacids, and solvation assessing the effects of both

side-chain side-chain interactions and side-chain ligand

interactions.25 Approximately 13,000 docked complexes

each for hSERT and dSERT were generated.

When docking small molecules into crystal structures,

the ROSETTALIGAND energy function reliably identifies

the correct binding model.25 We validated ROSETTALI-

GAND’s performance on the leucine transporter system

by docking leucine into the leucine transporter crystal

structure (see supplemental information). Inaccuracies in-

herent in comparative models preclude identification of

the native binding mode based solely on the energy func-

tion. However when dealing with comparative models,

the energy funnel of the correct binding mode is shal-

lower and local minima can have increased depth (see

Fig. 1). Nonetheless, the correct binding mode can occupy

a minimum in the energy landscape, which we demon-

strate for two comparative model docking studies (see

supplemental information). As discussed by recent stud-

ies, docking to comparative models remains a difficult

task; often experiments can be designed that discriminate

between alternate docking poses.29,30 Docked complexes

occupying a physiologically relevant minimum in the

energy landscape might then be identified through testing

the predictive power of the models using available bio-

chemical data as a filter.

In the current study, structures with the best protein

ligand interaction energies were selected in a first filter. A

second filter imposed a 3.6 Å distance between the 5-HT

amine tail and one of the D98 side-chain carboxyl oxy-

gens. In a third-round filter, binding modes were chosen

that were present in both dSERT and hSERT based on

the assumption that the 5-HT binding mode is conserved

across the two species.

Serotonin analog docking

After identifying a common binding mode for 5-HT in

the both hSERT and dSERT models, 5-HT analogs were

placed into the ligand binding site while maintaining the

putative binding mode of 5-HT. Each of the analogs then

underwent Monte Carlo refinement and gradient energy

minimization allowing small adjustments in ligand posi-

tion and side-chain conformations. For each binding

mode, the nine lowest total ROSETTA energy structures

for each analog were selected. Out of the nine structures,

the structure with the lowest total ROSETTA energy and

with an indole ring less than 1 Å RMSD from the start-

ing position was retained for binding energy calculations.

The one exception to the RMSD constraint was the 7-

benzyloxy-tryptamine analog, which was allowed to devi-

ate further due to the large bulk of the substitution. The

resulting lowest energy structures were visually inspected

to verify that they retained the original binding mode.

The binding energy was calculated using,

DEligand binding ¼ DEprotein bound state � DEprotein unbound state

ð1Þ

where DEprotein_unbound_state is the energy of the protein

in the unbound state, and DEprotein_bound_state is the

energy of the protein in the bound state plus ligand pro-

tein interaction energy. The change in energy, DE, is

given by

DE ¼ DEatr þ DEdun þ DEhb þ DEpair þ DEsol ð2Þ

Figure 1
A schematic docking energy landscape is shown as a function of

backbone RMSD. The energy is indicated by color from low (red) to

high (blue). As the error or RMSD in the backbone increases the native

minimum in the energy landscape E native is obscured. Alternate binding

modes associated with higher energies can no longer be clearly

distinguished from the native binding mode E model. Comparative

models by their nature have some error in their atom coordinates. In

turn frequently multiple minima are observed when docking small

molecules into comparative models. Additional experimental data are

required to distinguish between these models.

K.W. Kaufmann et al.
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as was reported previously.25,31 DEatr is the attractive

portion of a van der Waals Lennard-Jones 12-6 potential

energy term. DEdun is the energy derived from the Dun-

brack rotamer probability. DEhb is the energy of hydrogen

bonds involving side chains. DEpair encodes for the

energy due to electrostatic interaction between residues.

DEsol is a Lazaridius-Karplus approximation of the solva-

tion energy. The repulsive portion of the van der Waals

energy was removed to decrease noise inherent in the

sensitivity of this term. DE for each residue was summed

to obtain the total DE for the protein binding energy.

Amino acid residues with a DE < 21 were considered to

be major contributors to the binding energy.

Model refinement of binding mode with
bound Na1 ion

Molecular models for the sodium (Na1) ion bound

form of both hSERT and dSERT were generated and

refined using the following protocol. The ROSETTALI-

GAND binding mode was taken as the starting point for

model refinement using the AMBER force field.32 Briefly,

the binding mode models for the hSERT and dSERT were

aligned with the published structure of LeuTAa (PDB

ID:2A65) and a single Na1 ion was added to both mod-

els by copying the coordinates of atom Na 752 (Na1

binding site). Models of the hSERT and dSERT sodium

ion binding site were then refined with 50 steps of steep-

est descents and 450 steps of conjugate gradient energy

minimization in AMBER933 followed by brief (1 ns),

low-temperature (50 K) molecular dynamics simulations

in-vacuo using a distance-dependent dielectric constant,

and 12 Å cutoff for nonbonded interactions. Partial

charges for 5-HT were developed using the atom-centered

point charge method of Bayley et al.33 All other molecu-

lar mechanics parameters for 5-HT and ions were taken

from the standard AMBER force field. Two-dimensional

schematics of the refined hSERT and dSERT ion binding

sites were generated with ChemDraw 10.0 (Cambridge

Soft) while 3D representations were rendered with

PyMol.34

SVM analysis for tryptamine analog
pharmacology

Support vector machines (SVM),35 a form of machine

learning previously used by this group to study anti-can-

cer activity of epothilones,36 were applied to derive a

substitution sensitivity model for SERT substrates using

uptake inhibition data from a previously published study

of tryptamine analogs.14 The freely available software,

LIBSVM,37 was applied to 26 tryptamine analogs to

derive models for hSERT and dSERT sensitivity to substi-

tution at positions around the indole ring and ethyl

amine tail. The binary encoding scheme for each com-

pound was configured to indicate the type of substituent

at each of the following positions: R1/2, a, 2, X, R3, 4, 5,

6, 7 (see Fig. 2 and supplemental information). A total of

24 binary inputs are required to uniquely describe the

configuration of each of the 26 tryptamine analogs in

these nine positions. The resulting input vector of length

24 for each compound is associated with a normalized

floating point representation of the experimentally meas-

ured binding constant for [3H]5-HT uptake inhibition

(Ki) for training of the SVM.

Epsilon support vector regression was applied with a

cost of 0.2 and a polynomial kernel function with gamma

of 0.1. Optimal cost (c) and gamma (g) parameters were

empirically determined via a systematic search for best

RMSD for predicting log Ki from leave-one-out cross val-

idation. Description of the theory and application of

SVM can be found in the following references.35,37 The

sensitivity to each input was computed as the absolute

partial derivative of the output (i.e., SVM-predicted

binding constant) with respect to that input. The average

sensitivity to substitution was computed by taking the

mean of the sensitivities for all inputs coding for substi-

tution at a position on the tryptamine core. The ration-

ale of this approach is that large derivatives identify sen-

sitive inputs that point to more critical regions for bind-

ing and vice versa. The average sensitivity to substitution

at each position was displayed as a colored molecular

surface using PyMOL.34

RESULTS

Our strategy employs comparative modeling, ligand

docking, and SAR methodology to address species selec-

tivity for substrate recognition in hSERT and dSERT.

Comparative modeling of a target sequence based on a

known structural template requires identification of a

related structural template, alignment of the target

Figure 2
Tryptamine core used in fragment-based substitution encoding for SVM

sensitivity maps.

SERT Substrate Recognition through Docking
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sequence to the structure, model construction, and

assessment of the resulting structure.38 Ligand docking

programs seek to identify the lowest free energy structure

of the ligand–protein complex.39 It is beneficial to cate-

gorize the available structural degrees of freedom into

ligand internal degrees of freedom (ligand conformation),

ligand translation and rotational degrees of freedom

(pose), protein side-chain degrees of freedom (rotamer),

and protein backbone degrees of freedom. Our approach

optimizes all of these degrees of freedom during the

course of the model development. In addition, we use

SVMs to condense data into substitution sensitivity maps

which can be readily compared to the ligand-protein

complexes.35,36 SVMs allow analysis of data sets con-

taining noise and uneven distribution in the chemical

space tested by offering an overview of the available data.

The overview can then be interrogated in more depth.

Sequence alignment demonstrates high
similarity between the LeuT and the SERT
substrate binding sites

Sequence alignments offer insight into the structural

similarity of two proteins. The sequence identities in

Table I, based on the alignment of hSERT and dSERT to

the rSERT-LeuTAa alignment in Figure 3, reflect regions

expected to have different degrees of involvement in the

binding of substrates as defined in the Methods section.

The sequence identity increases from � 15% to greater

than 50% as the focus narrows on the first shell of resi-

dues in the binding site. As the sequence identity

increases, the confidence in the alignment and the result-

ing quality of the comparative models increases.40

SERT comparative models extensively
sample backbone and side-chain
conformational space

A side by side comparison of hSERT, dSERT, and Leu-

TAa models highlight differences that may be responsible

for differences in ligand recognition and transport. As

can be seen in Figure 4, many side chains of the trans-

porters retain not only their amino acid identity but also

the v angles, supporting the conserved functionality of

these residues. Most of the diversity observed in the

binding site is conserved across both dSERT and hSERT

and also occurs at the intracellular end of the binding

site. The backbone RMSDs in the 20 SERT models range

from as little as 0.9 Å in the binding site up to 2.3 Å in

trans-membrane spans (see Table I). SCAM accessibility

patterns in the regions comprising the binding site show

a periodicity that agrees with available experimental data

(see Fig. 5).

Serotonin docking comprehensively
samples translational and rotational
degrees of freedom in the protein–ligand
complex and identifies five potential
binding modes

Ligand docking searches for the most energetically

favorable position of 5-HT in the binding pocket; thus

identifying likely structural determinants for 5-HT recog-

nition. Out of the top 100 lowest energy 5-HT complexes

for each protein, 22 dSERT models and 24 hSERT models

contained a D98 contact. Of those models, six binding

modes were present in both proteins. Five of the six

binding modes place the amine in approximately the

same location as seen for leucine in the LeuTAa structure.

These five modes were carried forward for further analy-

sis and are shown in Figure 6. The first three binding

modes Up_a, Up_b, and Up_c have the 5-hydroxyl group

oriented in the general direction of the extracellular

surface [Fig. 6(a–c)]. In the first binding mode Up_a

[Fig. 6(a)], the 5-hydroxyl points toward F335, pushing

the phenyl ring of F335 up against the TM 6 helix.

The indole nitrogen neighbors T439 in TM 8 at the

interface between TMs 3 and 8. For the second binding

mode Up_b [Fig. 6(b)], the indole ring is rotated 1808
relative to the orientation in Up_a. The indole nitrogen

now faces F341. The 5-hydroxyl group is placed against

the ring of Y176 lining the upper side of the binding

pocket. Up_c [Fig. 6(c)] has the indole ring rotated 908
relative to Up_a. It packs against the phenyl ring of Y176

in a p-stacking interaction. The edge of the ring points

toward the interface between TMs 8 and 3, with A173

and G442 opposite to the indole nitrogen in that inter-

Table I
Relationship Between Sequence Identity and Expected Model Accuracy

Overall Loop regions TMs Core TMs 2nd Shell 1st Shell

Protein sequence identity hSERT 17% 11% 25% 35% 40% 58%
108/630 40/362 68/268 38/108 31/77 11/19

dSERT 18% 14% 23% 33% 36% 52%
113/622 51/354 62/268 36/108 28/77 10/19

Expected backbone RMSD to true structure39 >5 � >5 � �2.5 � �2 � – –
Backbone RMSD to LeuTAa hSERT 1.6–2.1 1.1–1.6 1.0–1.3 0.9–1.2

dSERT 1.4–2.3 1.1–1.8 1.0–1.3 0.9–1.2

Relationship between sequence identity of hSERT and dSERT to LeuTAa in specific regions of the protein and the expected model accuracy. Core TMs are TMs 1, 3, 6,

and 8. Second shell and 1st shell residues include all residues with Ca atoms within 12 and 7 Å, respectively, of an atom from the leucine ligand in the PDB structure

2A65.

K.W. Kaufmann et al.
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Figure 3
Sequence alignment between LeuTAa, hSERT, dSERT, and rSERT. Blue background denotes complete conservation of amino acid identity. Light gray

background denotes similarity of amino acid identity across sequences. Rectangles above amino acids mark the transmembrane helices. Core

transmembrane helices are shaded gray. Red stars denote amino acids in the first shell of the binding site. Blue squares highlight residue in the

second shell of the binding site.

PROTEINS 635
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face. In Up_c, the 5-hydroxyl group forms a steric con-

tact with L99. The fourth binding mode (Side) has the 5-

hydroxyl bond horizontal in the binding pocket pointing

toward T439 and G442 in TM 8 at its interface with TM

3 [Fig. 6(d)]. The indole ring lies sideways in the binding

pocket with the side of the indole ring packing against

I172. Additionally, the indole nitrogen points toward

F335 at top of the binding pocket. The Down binding

mode [Fig. 6(e)] shows a 1808 rotation of the indole ring

relative to the position observed in Up_c. The indole

nitrogen is in approximately the same position though

pointed more toward T439 and N177. The 5-hydroxyl is

now pointed down toward A169 in TM 3 and G342 in

TM 6. The residues contributing to the binding energy

are boxed in a flattened representation of the binding

pocket in each of the five binding modes as shown in

Figure 6(I). The agreement of the biochemical data with

each of the binding modes is shown in Figure 6(II).

SVM-derived sensitivity maps highlight
species differences in the SERT
substrate recognition

Adkins et al.14 reported the potencies of 27 trypt-

amine analogs to inhibit the uptake of [3H]5-HT in the

hSERT and the dSERT. Here, we develop SVM-sensitivity

maps to visually display differences in the recognition of

tryptamine derivatives [Fig. 7(a,b)]. The SVM model

trained on tryptamines assayed on the hSERT displays

strong sensitivity to substitution at the 5th position and

weaker sensitivity at the R3 indole position and R1 and

R2 ethyl amine positions [Fig. 7(a)]. The dSERT SVM

model also shows strong sensitivity at the 5th position

with a weaker sensitivity at the R3 indole position, the 4

position, and the a-position to the ethyl amine [Fig.

7(b)]. Strong differences in sensitivity between the

hSERT and the dSERT SVM maps occur at positions R1,

R2, R3, a, 4, 5, and 7 [Fig. 7(c)]. The hSERT SVM map

shows higher sensitivity at the R3, 7, R1, R2, and 5 posi-

tions in order of increasing difference in sensitivity. The

dSERT SVM map shows higher sensitivity at the a, and

4 position in increasing order of difference in sensitivity.

Care is taken to avoid over-interpretation of the SVM

maps by resorting to the original data when making use

of the maps in the context of modeling.

Serotonin analog docking probes
ROSETTALIGAND identified binding modes
through binding energy prediction

It can be hypothesized that SERTs recognize trypt-

amine analogs in a conserved manner such that the

indole ring occupies the same position in the binding

pocket. With this in mind, the native binding mode for

5-HT should explain the differences in the binding affin-

ity seen for other tryptamine analogs. Representative

deviations of the indole ring when docking 5-HT analogs

in the Down binding mode are shown in Figure 8. In the

Down mode, the substitution of the indole nitrogen

causes Y176 to change rotamers. Substitutions at the 5th

position interact with residues V343, G442, and A169 in

Figure 4
Overlay of hSERT comparative model in green and the dSERT model in

cyan on LeuTAa crystal structure in gray. The conformational space

sampled in this study remains close to that of the backbone captured in

the LeuTAa structure. Gradient minimization retains most of the same
side-chain interactions, due to the high sequence identity evident in the

binding site. This figure was prepared using PyMOL.34

Figure 5
hSERT Down binding mode with substituted cysteine accessibility

mapped onto TM 1, 3, and 10. Red to blue scale indicates no sensitivity

to large sensitivity to MTS attack of a cysteine substituted at that

residue. All three helices show patterns consistent with the helix

orientations in the models. This figure was prepared using PyMOL.34

K.W. Kaufmann et al.
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this binding mode. Figure 6(III–V) shows the correla-

tions of the predicted binding free energies of ligand

binding and the log of the uptake and binding Ki values

extracted from experimental competitive uptake and

binding assays by Adkins et al.14 The Down mode shows

the highest correlation for all three datasets. The correla-

tion coefficient of the Down binding mode to the log

uptake Ki data from Hela cells is 0.72. The correlation

coefficient to log uptake Ki data from HEK293 cells is

0.60. The coefficient falls to 0.29 when compared with

log binding Ki data extracted from HEK293 competition

binding assays. The first two datasets of uptake Kis in

HEK293 and Hela cells assess the ability of tryptamine

analogs to competitively inhibit uptake of tritiated sero-

tonin across membranes with the SERT transporter. The

third dataset of binding Kis assesses the ability of trypt-

amine analogs to compete with a high-affinity inhibitor

to bind to the SERTs. This third category measures a

competitive binding event, a more close approximation

to the binding energy measured in this study. However,

binding is thought to be an important step during trans-

port, and the uptake studies examine the ability of chem-

ical similar compounds to compete. Thus, uptake po-

tency provides a relevant assessment of binding. In any

Figure 6
For each of the docked complexes (a) Up_a, (b) Up_b, (c) Up_c, (d) Side, (e) Down (I) shows a flattened representation of the binding site with

residues contributing most to the computational binding energy outlined in rectangles with black borders. (II) shows agreement of each docking

mode with biological data. Each mode contains a D98 contact. Up_a and Up_b display contacts with TM 10 that contradict the lack of protection

from MTS inactivation. Up_c and Side binding modes do not match the SVM species difference maps. All the modes show interaction with I172

and Y176 explaining protection against MTS modification. The Side and Down modes pack closely to A441 in a manner which may explain

protection of A441C by 5-HT from MTS modification. (III–V) Correlation plots for predicted log Ki (calculated on computational binding free

energy of tryptamine analogs in these modes) and log Ki for uptake in Hela cells (III), for uptake in HEK293 cells (IV), and for binding in HEK293

cells (V). hSERT values are given in triangles and dSERT values in diamonds. All experimental transport and binding data taken from Adkins

et al.14
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case, the Down binding mode remains the best correlated

of the five binding modes [see Fig. 6(e)].

Model minimization in amber force field
confirms hydrogen bonding contacts
of 5-OH group

We refined our final models using the AMBER force

field employing a short molecular dynamics simulation

as a minimization tool.41 We leverage the ability of the

molecular mechanics force field in AMBER to model

ligand flexibility to optimize the models for the hSERT

and dSERT 5-HT Down binding mode (see Fig. 9). As

this calculation is a local refinement with minimal move-

ments, the ROSETTALIGAND conformations are not

altered significantly. However, the geometry of hydrogen

bonds and other local interactions are improved. The

conformation identified by ROSETTALIGAND proves to

be stable after 1 ns of molecular dynamics. The overall

RMSD of the binding site in both models before and

after refinement is <1.0 Å indicating that, even though

the sodium ion is not explicitly included in our model

building and ligand docking to identify the ‘‘Down’’ bind-

ing mode, the conservation of the site implicitly encodes

this information. The 5-OH substituent of 5-HT main-

tains a hydrogen bond to the dSERT D164 side-chain car-

bonyl oxygen, whereas in the hSERT the 5-OH of 5-HT

forms transient hydrogen bonds to the backbone oxygens

of residue A169 (dSERT D164) and A441 (dSERT G432).

DISCUSSION

This study examines two primary questions; ‘‘Can

docking of 5-HT into comparative models of SERTs

identify a physiologically relevant binding mode consist-

ent with known mutagenesis, SCAM, and SAR data?’’

and ‘‘If so, what are the implications for SERT substrate

recognition?’’ Computational docking on its own is

unlikely to present a single correct solution due to the

errors inherent in comparative models.30 However, dock-

ing to comparative models may yield a physiologically

relevant binding mode29 (see supporting information).

Functional conservation, sequence identity, and biochem-

ical structural data all indicate promising potential for

comparative models based on LeuTAa structure. Chothia

and Lesk42 found that functional conservation of pro-

teins often implies a higher structural conservation than

sequence identity would imply. In a study of comparative

modeling for membrane proteins, Forrest et al.40

reported that sequence identities above 30% in the trans-

membrane domains yield models with Ca-RMSD of � 2

Å to the true structure. Biochemical structural informa-

tion such as the SCAM profiles of TMs 1, 3, and 10 in

SERTs are consistent with the LeuTAa structure.22

No single model resulting from this process is guaran-

teed to satisfy all the biochemical data available. How-

Figure 7
Sensitivities of positions to substitution predicted from support vector

machine trained on SERT transporter substrate uptake Kis. Blue to red

gradient indicates low to high sensitivity. (a) hSERT, (b) dSERT, (c)

difference map (hSERT-dSERT) of the raw sensitivities. Blue shows

higher sensitivity for dSERT. Green to red indicates moderate to higher

sensitivity in hSERT. This figure was prepared using PyMOL.34

Figure 8
A superimposition of the indole ring of tryptamine derivatives in the

Down binding mode is shown for hSERT and dSERT docking. It

highlights the conserved manner in which tryptamine derivatives are

recognized by SERTs. This figure was prepared using PyMOL.34
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ever, in our study unbiased sampling of possible binding

modes produced a single binding mode in line with all

biochemical data. The collective satisfaction of these con-

straints indicates the physiological relevance of the Down

binding mode shown in Figures 6(e) and 9. For example,

in the Down mode residues, I172 and Y176 are protected

from MTS modification and subsequent inactivation of

transport. Only bulky or charged mutations at I172 have

a significant effect on 5-HT transport,12 indicating a

purely steric impact of this position on the binding site

as is indicated by the packing against the side of the

indole ring. The hSERT G100A mutant is transport defi-

cient but maintains an unperturbed binding affinity.43

Since the Down binding mode lies below G100, G100A

would not significantly perturb this binding mode. TM

10 residues cannot be protected from MTS attack and

inactivation by 5-HT binding.6 The Down binding mode

predicts this since it leaves TM 10 amino acids, which

are sensitive to MTS modification, solvent accessible.

Finally, the A441C mutant is protected from MTS access

by 5-HT44 inline with the proximity of A441 to the 5-

OH group. The sum of all these experimental data points

support the Down binding mode as a physiologically

relevant placement for 5-HT in the binding site.

SVM sensitivity maps reveal differences in the sensitiv-

ities of dSERT and hSERT to substitution at the R3, 4, 5,

and a-positions (see Fig. 7). The R3 indole nitrogen dis-

plays sensitivity to bulky substituents in hSERT.14 An

isopropyl substitution causes a significant decrease in

transport, whereas a methyl substituent in the same posi-

Figure 9
The Down binding mode in the hSERT and dSERT models. Dashed lines in (a) and (b) represent stable hydrogen bonding interactions observed

during the 1 ns AMBER refinement of the best ROSETTALIGAND model [Fig. 6(e)] of the substrate binding site. The dashed line from 5-HT to

the aromatic ring of Y176 marks a T-type ring stacking interaction. The gray-shaded areas highlight major differences of the hSERT and dSERT

models in the substrate binding site: (I) The A441/D164 hydrogen bonding interactions with the 5-OH position of 5-HT. (II) I172/M167 packing

interactions with 5-HT indole ring. Panels (c) and (d) show 3D representations of the Down binding mode in hSERT and dSERT models.
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tion causes little difference in uptake. These data indicate

that the indole nitrogen likely faces a sterically restricted

area in hSERT. The Down binding mode places the

indole nitrogen R3 substituents proximal to Y176/Y171.

Y176 has been shown to be important for transport8;

thus, it is not surprising that the substitutions perturbing

this residue are detrimental to transport. Adkins et al.

identified a mutant hSERT, Y95F, which minimizes this

effect.14 Since no direct contact between R3 substituents

and Y95 is seen in our models, we hypothesize an indi-

rect effect as follows: the tryptamine N-isopropyl substi-

tution causes a shift in the indole ring toward the bot-

tom of the pocket where Y95 is located in hSERT (F90 in

dSERT). Mutation at position 95 allows for a structural

rearrangement that accommodates additional bulk at the

indole nitrogen position. If this is the case, then bulk

reducing mutations at neighboring residues, such as

V343, L344, and A441, could have a similar effect and

could serve to test our hypothesis. In contrast to hSERT,

the intracellular base of the binding site in dSERT exhib-

its a more polarizable nature (e.g., hydrophobic to polar-

izable I172/M167, V343/T335 hydrophobic to polar, and

A169/D164 hydrophobic to charged, see Fig. 9). The

hydrogen bond seen between the 5-OH of 5-HT and the

side chain of D164 reinforces this view. Furthermore,

sensitivity to substitution at positions 4 and 5 as shown

in the SVM sensitivity maps agree with the Down bind-

ing mode by placing hydroxyl groups near V343/T335

and A169/D164 in the hSERT/dSERT [Figs. 7(c) and 9].

The Down binding mode merits experimental investi-

gation given agreement with the above biochemical data.

The difference in polarity in this region in combination

with the Down mode placing the 5-OH in this region

implies that dSERT and hSERT should exhibit a differen-

tial preference for polarity surrounding the 4 and 5 posi-

tion of the tryptamine ring. Further studies with species

switching mutations of the above residues will ascertain

the role of these residues in substrate specificity for 4-

and 5-position tryptamine derivatives. Since the sparse-

ness in the dataset for substitutions at a, R3, and 4 limits

the further analysis of determinants of sensitivities to

substitution at these positions, uptake and binding assays

experiments with additional substrates modified at these

positions should be useful in the context of our models.

The Down binding mode places the indole ring such

that the 6 and 7 positions of the tryptamine core point

toward the interface between TM 8 and TM 3. The

amino acid identities of residues at this interface do not

change significantly in hSERT and dSERT. However,

future experiments with site-directed mutants in this

region may verify the orientation of indole ring of the

Down binding mode. One prediction is that a hSERT

T439A mutant would display differential recognition of

polarity switching substitutions at the 7th position on

the tryptamine core. Additional hSERT mutants, such as

G442S, A173S, and A169S, would impact recognition of

6-position substituted tryptamines with varied hydrogen

bonding capabilities. Assessing the function of these

mutants in both hSERT and dSERT backgrounds could

validate the assumption of a conserved mode for trypt-

amines in SERTs. Should the assumption prove incorrect,

this constraint on the binding mode selection could be

changed to find modes consistent with new experimental

findings.

Despite the advances made with the current models,

much still remains unknown. The LeuTAa structure cap-

tures but one state in a multistep transport process.

Structures of other states in the transport process are

needed to fully understand species selectivity for sub-

strates. Additionally, the LeuTAa structure lacks a chloride

in the binding site known to be required for function of

the SERT. Studies are forthcoming to elucidate mecha-

nism of chloride coupling in transport.

Jorgensen et al.45 independently performed a manual

docking and molecular dynamics study with 5-HT in

hSERT. Interestingly, the binding mode identified is simi-

lar to our Down mode. Celik et al.46 recently reported a

study on hSERT using the paired mutant-ligand analog

complementation approach. They reported an alternate

binding mode using this approach. Our approach places

a lower priority on their proposed binding mode as it

seems less consistent with the cross-species sensitivities

reported in the SVM sensitivity maps. We expect hSERT and

dSERT to show differences in the amino acids in regions

surrounding the 5th position and the N-position. Of course,

hSERT and dSERT could bind 5-HT in different modes, but

this is unlikely. Our study applies a different approach of

comparing multiple tryptamine derivatives in both hSERT

and dSERT, thereby identifying structural determinants of

substrate specificity in these transporters.

CONCLUSIONS

Docking of 5-HT into hSERT and dSERT identifies a

single conserved binding mode, in which the predicted

binding energy of tryptamine derivatives correlates with

inhibition uptake constants (R 5 0.72). The Down bind-

ing mode curls the ethylamine tail under F335 and S336

and orients the 5-OH group toward A169 with the indole

nitrogen facing the top of the binding site covered by

Y176. This binding mode correctly predicts, qualitatively,

the decreased modification by SCAM reagents of cys-

teines substituted at I172, Y176, A441, and the extracellu-

lar half of TM 10 due to binding of 5-HT. The mode

posits that polarity differences caused by A169D and

V343T changes could be responsible for species selectivity

observed for hSERT and dSERT recognition of trypt-

amine derivatives. As additional mutations in SERTs are

produced and characterized, particularly in the context of

substituted tryptamines, our models should be capable of

local refinement to even more precisely focus its utility.
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